Malaysian Applied Biology Journal

  • Increase font size
  • Default font size
  • Decrease font size

40-2-04

E-mail Print PDF
Malays. Appl. Biol. (2011) 40(2):27–36

GENETIC DIVERSITY OF GLYPHOSATE-RESISTANT AND GLYPHOSATE-SUSCEPTIBLE Eleusine indica (L.) Gaertn (POACEAE) POPULATIONS FROM PENINSULAR MALAYSIA

CHONG, J.L.1*, WICKNESWARI, R.2, ISMAIL, B.S.2 and SALMIJAH, S.2

1Department of Biological Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.
2School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
*E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it

ABSTRACT

Genetic diversity within and among six glyphosate-resistant (R) and eight glyphosate-susceptible (S) Eleusine indica populations was determined using isozyme markers. Genetic variations at 13 enzyme loci from 8 enzyme systems were determined in a total of 840 accessions. Mean percentage of polymorphic loci (P = 23.08 %), mean number of alleles per locus (A = 1.2) and effective number of alleles per locus (Ae = 1.1) were similar for both R and S populations. Levels of expected heterozygosity (He) were also low and not significantly different (P> 0.10) between the R (He = 0.067) and S (He = 0.069) biotypes but levels of observed heterozygosity (Ho) were significantly lower (P< 0.10) in the S populations (Ho = 0.003) than in the R populations (Ho = 0.014). However, the overall degree of genetic differentiation for the 14 populations was high (FST = 0.53), indicating high genetic divergence among the populations surveyed which was mainly contributed by the S populations (FST = 0.622). The total gene flow was low (Nm = 0.225) with mean genetic distance of 0.046, which is consistent with high FST values. UPGMA clustering analysis revealed two main clusters: cluster I consisting of the S populations from Kuala Selangor, and Sungai Tangkas, Selangor; Jasin, Melaka; Pulau Tikus, Pulau Pinang; Bidor, Perak and Chaah, Johor while cluster II consists of all the R populations and the S populations from Temerloh, Pahang and Lenggeng, Negeri Sembilan.


ABSTRAK

Kepelbagaian genetik di dalam dan antara enam populasi rintang-glifosat (R) dan lapan populasi rentan-glifosat (S) telah ditentukan menggunakan penanda isozim. Variasi genetik pada 13 lokus enzim daripada 8 sistem enzim ditentukan dalam sejumlah 840 aksesi. Purata peratus lokus polimorfik (P = 23.08 %), purata alel setiap lokus (A = 1.2) dan bilangan alel berkesan setiap lokus (Ae = 1.1) adalah agak serupa untuk kedua-dua populasi R dan S. Keheterozigotan dijangka (He) juga rendah dan tidak berbeza secara signifikan (P> 0.10) antara biotip R (He = 0.067) dan S (He = 0.069) tetapi keheterozigotan dicerap (Ho) rendah secara signifikan (P< 0.10) dalam populasi S (Ho = 0.003) berbanding populasi R (Ho =0.014). Namun, perbezaan genetik keseluruhan untuk 14 populasi adalah tinggi (FST = 0.53), menunjukkan kepelbagaian genetik tinggi antara populasi yang dikaji yang sebahagian besarnya disumbang oleh populasi S (FST = 0.622). Jumlah aliran gen adalah rendah (Nm = 0.225) dengan purata jarak genetik 0.046, konsisten dengan nilai FST yang tinggi. Analisis UPGMA menunjukkan dua kumpulan utama: kumpulan I terdiri daripada semua populasi S dari Kuala Selangor dan Sungai Tangkas, Selangor; Jasin, Melaka; Pulau Tikus, Pulau Pinang; Bidor, Perak dan Chaah, Johor manakala kumpulan II mewakili semua populasi R dan populasi S Temerloh, Pahang dan Lenggeng, Negeri Sembilan.

Key words: genetic diversity, glyphosate, resistance, Eleusine indica, isozyme markers

REFERRENCES

Barnes, D.E. & Chan, L.G. 1990. Common Weeds of Malaysia and Their Control. Kuala Lumpur: Ancom Berhad. 349 pp.

Beckie, H.J. 2011. Herbicide-resistant weed management: focus on glyphosate. Pest Management Science 67: 1037–1048.

Crow, J.F. & Kimura, M. 1970. An Introduction to Population Genetic Theory. New York: Harper and Row. 656 pp.

Darmency, H. & Gasquez, J. 1990. Appearance and spread of triazine resistance in common lambsquarters (Chenopodium album). Weed Technology 4: 173–177.

Doll, J. 1999. Glyphosate Resistance Updates: Glyphosate Resistance in Another Plant. http://www.tricity.wsu.edu/aenews/ DecOOAENews/DecOOAENews.htm# anchor176277

Duke, S.O. & Powles, S.B. 2008. Glyphosate: a once- in-a-century herbicide. Pest Management Science 64: 319–325.

Hamrick, J.L. & Godt, M.J.W. 1989. Allozyme diversity in plants. In Brown, A.H.D., Clegg, M.T., Kahler, A.L. & Weir, B.S. (eds.). Plant Population Genetics, Breeding and Genetic Resources, pp 43-63. Sinderland: Sinauer Associates.

Hamrick, J.L., Gom, M.J.W., Murawski, D.A. & Loveless, M.D. 1991. Correlations between species traits and allozyme diversity: implications for conservation biology. In Falk, D.A. & Holsinger, K.E. (eds.). Genetics and Conservation of Rare Plants, pp 75-86. New York: Oxford University Press.

Hedrick, P.W. 2005. Genetic of Populations. 3rd Ed. Sudbury: Jones and Bartlett Publishers. 737 pp.

Holm, L.G., Plucknett, D.L., Pancho, J.V. & Herberger, J.P. 1977. The weeds. In The World’s Worst Weeds: Distribution and Biology, pp 47- 53. Honolulu: The University Press of Hawaii.

Lim, J.L. & Ngim, J. 2000. A first report of glyphosate-resistant goosegrass (Eleusine indica (L.) Gaertn) in Malaysia. Pest Management Science 56: 336–339.

Loveless, M.D. & Hamrick, J.L. 1984. Ecological determinants of genetic structure in plant populations. Annual Review Ecology and Systematics 15: 65–96.

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences USA 70(12): 3321–3323.

Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

Ng, C.H., Wickneswari, R., Salmijah, S. & Ismail, B.S. 2004. Inheritance of glyphosate resistance in goosegrass (Eleusine indica). Weed Science 52: 564–570.

Prather, T.S., Ditomaso, J.M. & Holt, J.S. 2000. Herbicide Resistance: Definition and Manage- ment Strategies. University of California Division of Agriculture and Natural Resources Publication 8012: 1–14.

Selander, R.K., Smith, M.J., Yang, S.Y., Johnson, W.E. & Gentry, J.B. 1971. Polymorphism and systematics in the genus Peromyscus. I. Variation in the old field mouse (Peromyscus polionotus). Studies in Genetics VI. University of Texas Publications 7103: 49–90.

Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution 39: 53–65.

Sneath, P.H.A. & Sokal, R.R. 1973. Numeral Taxonomy. San Francisco: Freeman. 573 pp.

Soltis, D.E., Haufler, C.H., Darrow, D.C. & Gastony, G.J. 1983. Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. American Fern Journal 73: 9–27.

Swofford, P.L. & Selander, R.B. 1997. BIOSYS-2: A computer program for the analysis of allelic variation in population genetic and biochemical systematics. Release 1.7. Users’ Manual. Illinois Natural History Survey, IL, USA.

Templeton, A.R., Shaw, K., Routman, E. & Davis, S.K. 1990. The genetic consequences of habitat fragmentation. Annals of the Missouri Botanic Garden 77: 13–27.

Teng, Y.T. & Teo, K.C. 1999. Weed control and management of resistant goosegrass (Eleusine indica) in Malaysia. Proceedings of the 17 th Asian-Pacific Weed Science Society Conference I (B): 753–758.

Van Treuren, R., Bijlsma, R., Van Delden, W. & Ouberg, N.J. 1991. The significance of genetic erosion in the process of extinction. I. Genetic differentiation in Salvia pratensis and Scabiosa columbaria in relation to population size. Heredity 66: 181–189.

Wahlund, S. 1928. Zusammensetzung von populationen und korrelationserscheinungen von stanpunkt der vererbungslehre aus betrachtet. Heriditas 11: 65–106.

Warwick, S.I. & Black, L.D. 1993. Electrophoretic variation in triazine-resistant and – susceptible populations of the allogamous weed Brassica rapa. Weed Research 33: 105–114.

Werth, C.R., Hilu, K.W. & Langner, C.A. 1994. Isozymes of Eleusine (Gramineae) and the origin of finger millet. American Journal of Botany 81: 1186–1197.

Wickneswari, R. & Norwati, M. 1991. Techniques for starch gel electrophoresis of enzymes from acacias. In Carron, L.T. & Aken, K.M. (eds.). Breeding Technologies for Tropical Acacias ACIAR Proceedings No. 37: 88–100.

Wright, S. 1965. The interpretation of genetic structure by F-statistics with special regard to systems of mating. Evolution 19: 355–420.

Yeh, F.C. & Boyle, T. 1999. POPGENE version 1.32. The user-friendly software for population genetic analysis. University of Alberta and CIFOR, Calgary, Alta.

Young, A., Boyle, T. & Brown, T. 1996. The population genetic consequences of habitat fragmentation for plants. Trends in Ecology and Evolution 11: 413–418.
 

Latest MABJ Issue

Vol 49(1) June 2020

coverphoto

Table of content

Latest news!

Malaysian Applied Biology is listed in the databases and indexed in Thomson Reuters Master Journal List, Myjurnal, Biosis, Zoological Records, UDLedge Life Science Index, CNKI, J-Gate and CABI.

Malaysian Applied Biology is indexed in Scopus since issue 41(1) 2012.

According to MyCite 2014 report, MABJ ranked 95 out of 142 Malaysian journals in terms of yearly impact factor.