Malaysian Applied Biology Journal

  • Increase font size
  • Default font size
  • Decrease font size

Malays. Appl. Biol. (2005) 34(1): 9-14

E-mail Print PDF

 

Malays. Appl. Biol. (2005) 34(1): 9-14

PROTEIN PROFILE OF ANABAENA FLOS-AQUAE EXPOSED TO ARSENIC AND HEAVY METALS MANGANESE AND CADMIUM

NIK, M.S.1*, KHAIRIAH, J.2, LIM, J.C.Y.1 and MUSHRIFAH, I.2

'School of Bioscience and Biotechnology,

2School of Environmental Science and Natural Resources,

Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor

ABSTRACT

We report the study on protein profile of Anabaena flos-aquae after exposure to arsenic (As) and two heavy metals manganese (Mn) and cadmium (Cd). This initial study was performed in order to find out if any particular protein is expressed after the heavy metal-resistant A. flos aquae was treated with these metals. The heavy metal concentrations used in the treatment were based on LD50 concentration. A. flos-aquae treated with Mn showed the presence of 6.5, 14 and 20 kDa protein bands and similar to untreated sample. Exposure of A. flos-aquae with Cd at LD5o and 50% above LD5o concentrations suppressed the expression of the 14 and 20 kDa bands. However, additional protein bands of 29, 36 and 55 kDa appeared in the sample treated with Cd 50 % higher than the LD50 concentration. Whereas, A. flos-aquae treated with 50% above LD50 concentration shows the presence of 24 and 55 kDa bands. Treatment of A. flos-aquae with As produced the same protein bands as the untreated sample except that at LD50 concentration, the 20 kDa band disappeared. However, the 14 kDa band is expressed at higher level in sample treated with concentration 50 % lower than LD50 and at LD50 concentrations, before it disappeared again at 50 % above LD50 concentration. These results suggest that the 55 kDa protein is very potential to be used as a biosensor for Mn contamination.

ABSTRAK

Kami melaporkan kajian profil protein pada Anabaena flos-aquae yang diberikan pendedahan arsenik (As) dan dua jenis logam berat iaitu mangan (Mn) dan kadmium (Cd). Kajian ini dijalankan untuk melihat sama ada terdapat protein tertentu yang diekspreskan selepas A. flos-aquae yang rintang terhadap logam diberikan perlakuan dengan logam berat tersebut. Kepekatan logam berat yang digunakan dalam perlakuan ini adalah berasaskan kepekatan pada LD50. A. flos-aquae yang diberikan perlakuan dengan Mn menunjukkan kehadiran jalur protein 6.5, 14 dan 20 kDa yang sama seperti sampel yang tidak diberikan sebarang perlakuan. Pendedahan A. flos-aquae dengan Cd pada kepekatan LD50 dan 50% tinggi dari kepekatan LD50 didapati menekan pengekpresian jalur 14 dan 20 kDa. Walau bagaimanapun, protein tambahan berberat molekul 29, 36 dan 55 kDa di perhatikan nadir pada sampel yang diberikan perlakuan dengan kepekatan Cd 50 % lebih tinggi dari kepekatan LD50. Manakala perlakuan A. flos-aquae pada kepekatan 50% di atas LD50 menunjukkan kehadiran jalur 24 dan 55 kDa. Perlakuan A. flos-aquae dengan As menghasilkan jalur protein yang sama seperti sampel kawalan kecuali pada kepekatan LD50 didapati jalur 20 kDa menghilang Walau bagaimanapun jalur 14 kDa telah diekspreskan pada paras yang lebih tinggi pada sampel yang yang diperlakukan dengan kepekatan LD50dan 50% di bawah kepekatan LD50 perlakuan pada kepekatan 50% lebih tinggi daripada LD50 menyebabkan jalur 14 kDa tersebut menghilang Keputusan ini mencadangkan bahawa protein pada 55 kDa sangat berpotensi untuk digunakan sebagai biosensor untuk pencemaran Mn.

Key words: heavy metals, Anabaena flos-aquae, protein, pollution

REFERENCES

Agrawal, G.K., Takwal, R. and Iwahashi, H. 2002. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem. Biophys. Res. Com., 294: 1009-1016.

Angela, I., Virta, M. and Kahru, A. 2002. Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil. Soil Biol Biochem., 34: 1439-1447.

Boyer, R.F. 1993. Modern experimental biochemistry 2nd edition. The Benjamin/ Cummings Publishing Co. Inc. USA. pp. 117.

Chen, Z., Ren, L., Shao, Q., Shi, D. and Ru, B. 1999. Expression of mammalian metallothionein-I gene in cyanobacteria to enhance heavy metal resistance. Marine Poll. Bull, 39(1-12): 155-158.

Desi, I., Nagymajtenyl, L and Schulz, H. 1998. Behavioral and neuro-toxicological changes caused by cadmium treatment of rats during development. Appl. Toxicol., 18: 63-70.

El-Enany, A.E. and Issa, A.A. 2000, Cyanobacteria as a biosorbent of heavy metals in sewage water. Environ. Toxic. Pharmacol., 8 (2): 95-101.

Elinder, C., Nordberg. M, Palm, B., Bjork, L. and Johnson, L. 1987. Cadmium, zinc, and copper in rabbit kidney metallothionein - relation to kidney toxicity. Environ. Res., 42: 553-562.

Forstner, U. 1995. Land contamination by heavy metals: global scope and magnitude of problem. In Allen, H.E., Huang, C.P., Bailey, G.W. and Bowers, A.R. (Eds). Metal speciation and contamination of soil. CRC Press, Boca Raton, Florida, pp. 1-33.

Guo, X-X., Shi, D-J., Xu, X-D., Ouyang, Y-X. and Ru, B-G. 1999. Metal-induced expression of mammal Metallothionein-1 gene in cyanobacteria to promote cadmium-binding preferences. Appl. Microb. Biotech., 52: 806-810.

Khairiah Jusoh, , Nik Marzuki, Sidik, Lee Yook Heng, Carol Ho Mui Ling & Nik Ahmad Nik Ahmad. Ketoksikan logam Zink dan Kadmium terhadap Anabaena flos-aquae. Sains Malaysiana, 32: 147-155.

Kloke, A., Sauerbeck, D. and Vetter, H. 1994. Changing metal styles and human health. Dahlem workshop reports. Springer, Berlin Heidelberg New York. Liu, J.R., Suh, M.C. and Choi, D. 2000.

Phytoremediation of cadmium contamination: over expression of metallothionein intransgenic tobacco plants. Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz, 43: 126-130.

Ma, M., Lau, P-S., Jia, Y-T., Tsang, W-K., Lam, S.K.S., Tarn, N.F.Y. and Wong, Y-S. 2003. The isolation and characterisation of Type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant, Festuca rubra cv. Merlin. Plant Sci, 164:51-60.

Mushrifah, I. and Peterson, P.J. 1992. Cadmium and tin-binding protein in buffer soluble fractions of Anabaena flos-aquae (Cyanobacteria), grown under nitrogen-fixing conditions') Malays. Appl. Biol. 21(1): 51-56.

Mushrifah, I. and Peterson, P.J. 1998. Cadmium and tin-binding protein in soluble fraction of Anabaena flos-aquae. Microbios, 93(375): 75-83.

Nogawa, K. and Kido, T. 1993. Biological monitoring of cadmium exposure in itai-itai disease epidemiology. Int. Arch. Occup. Environ. Health (Suppl.), 65: 43-46.

Pagliuca, M.G., Lerose, R., Cgliano, S. and Leone, A. 2003. Regulation by heavy metals and temperature of human BAG-3 gene, a modulator of HspVO activity. FEES Lett., 541: 11-15.

Quevauviller, P., Rauret, G., Lopez-Sanchez, J-F., Rubio, R., Ure, A. and Muntau, H. 1997. Certification of trace metal extractable content in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Sci. Total Environ., 205: 223-234.

Robinson, N.J., Tommey, A.M., Kuske, C and Jacjson, P.J. 1993. Plant metallothionein. Biochem. J., 295: 1-10.

Rubinelli, P., Siripornadulsil, S., Gao-Rubinelli, F. and Sayre, R.T. 2002. Cadmium- and iron-stress-inducible gene expression in the green alga Chlamydomonas reinhardtii: evidence for H43 protein function in iron assimilation. Planta, 215: 1-13.

Shaw, A.J. 1990. Heavy metal tolerance in plants: evolutionary aspects. AJ. CRC Press, Florida.

Vanhala, P.T., and Ahtiainen, J.H. 1994. Soil respiration, ATP content, and photobacterium toxicity test as indicators of metal pollution in soil. Environ. Toxicol. Water Qual.,9: 115-121.

 

 

Main Menu