Malays. Appl. Biol. (December 2004) 33(2): 1-6
GENOTYPE BY ENVIRONMENT INTERACTION AND STABILITY OF MAIZE GENOTYPES FOR GRAIN YIELD, MATURITY AND HARVEST INDEX
MIN, T.D.1, SALEH, G.B.1*, HALIM, R.A.1, ANUAR, A.R.2 and PANJAITAN, K.1
1Department of Crop Science,
2Department of Land Management,
Faculty of Agriculture, Universiti Putra Malaysia,
43400 UPM Serdang, Selangor, Malaysia
ABSTRACT
Genotype by environment (G x E) interaction and stability of genotypes are major concerns to plant breeders in developing cultivars. High and stable performances are desirable attributes of cultivars to be released for production, In this study, fourteen selected grain maize (Zea mays L.) genotypes were evaluated at four locations in Malaysia, to identify genotypes with high and stable performances for grain yield, days to maturity and harvest index (HI), The combined analysis of variance showed that effects of genotypes (G) were significant for all traits, indicating that genotypes varied significantly for the traits measured. The significant G x E interaction effects showed that the performances of genotypes were not consistent across environments for grain yield and days to maturity. The highest mean grain yield was revealed by Selected GxA and Putra J-58 (check variety), followed by GxA, DC-1, TWC-4 and SC-2, where the latter four genotypes had comparable grain yield. Most high yielding genotypes had similai number of days to maturity, however, Selected GxA and Putra J-58 had the highest and comparable harvest index, Considering four stability parameters computed, Selected GxA was found to be the most stable for grain yield, as i1 had regression coefficient close to unity (b = 0.89), highest coefficient of determination (0.99), lowest ecovalance (W; = 16350) and smallest deviation from the regression (s2d = 6365). TWC-1 was the most stable genotype for days to maturity, as it had regression coefficient close to unity (b = 1.01), highest coefficient of determination (0.99), lowesl ecovalance (W; = 0.01), and smallest deviation from the regression (s2d = 0.02). Of all the genotypes tested, Selected GxA had superior overall performance, hence, can be promoted for release.
ABSTRAK
Interaksi genotip dengan persekitaran (G x E) dan kestabilan genotip adalah pertimbangan yang penting kepada pembiakbaka tanaman dalam pembentukan kultivar. Prestasi yang tinggi dan stabil adalah ciri penting yang perlu ada pada kultivar, sebelum ianya digunakan untuk pengeluaran. Dalam kajian ini, 14 genotip jagung bijian (Zea mays L.) terpilih telah dinilai di empat lokasi di Malaysia, untuk mengenalpasti genotip yang mempunyai prestasi yang tinggi dan stabil bagi hasil bijian, hari kematangan dan indeks tuaian (HI). Analisis varian yang digabungkan menunjukkan kesan genotip (G) yang bererti untuk semua sifat, menjelaskan bahawa genotip berbeza dengan ketara untuk sifat-sifat yang diukur. Kesan interaksi G x E yang bererti menunjukkan bahawa genotip tidak memberikarj prestasi yang konsisten pada persekitaran berbeza, untuk hasil bijian dan hari kematangan. Hasil bijian purata yang tertinggi ditunjukkan oleh Selected GxA dan Putra J-58 (varied kawalan), diikuti oleh GxA, DC-1, TWC-4 dan SC-2, di mana GxA, DC-1, TWC-4 dan SC-2 memperolehi hasil yang setanding. Kebanyakan genotip yang berhasi] tinggi mempunyai kematangan yang sama, walau bagaimanapun, Selected GxA dan Putra J-58 memperolehi indeks tuaian yang tertinggi dan setanding. Mengambilkira keempat-empat parameter kestabilan yang digunakan, Selected GxA didapati paling stabil dalam hasil bijian, kerana mempunyai pekali regresi menghampiri uniti (b = 0.84), pekali penentuan tertinggi (0.99), ekovalans terendah (W; = 16350) dan sisihan dari regresi terendah (s2d = 6365). TWC-1 adalah paling stabil untuk kematangan, kerana menunjukkan pekali regresi menghampiri uniti (b = 1.01), pekali penentuan tertinggi (0.99), ekovalans terendah (W( = 0.01), dan sisihan dari regresi terendah (s2d = 0.02). Di kalangan genotip yang diuji, Selected GxA mempunyai prestasi keseluruhan yang unggul, oleh itu, ianya boleh di ketengahkan untuk pengeluaran.
Key words: Zea mays L., stability parameters, G x E interaction, performance, harvest index.
REFERENCES
Austin, R.B. 1990. Prospects for genetically increasing the photosynthetic capacity oi crops. In: Perspective in biochemical ana genetic regulation of photosynthesis. I. Zelitch and N.S. Allen (Eds.). A.R. Liss, New York, p. 395^09.
Donald, C.M. 1962. In search of yield. J. Aust. Inst. Agri. Sci.,28: 171-178.
Eberhart, S.A. and Russell, W.A. 1966. Stability parameter for comparing varieties. Crop Sci., 6: 34-40.
Evans, L.T. 1983. Raising the yield potential: b> selection or by design. In: Genetic engineering of plants. T. Kosuge, C.P. Meredith and A. Hollaender (Eds.). Plenum Press, New York, p. 371-389.
Frankel, O.H. 1947. The theory of plant breeding for yield. Heredity 1: 371-389.
Frey, K.J. 1988. Plant population management and breeding. In: Crop Breeding. D.R. Wood (Ed.). American Society of Agronomy. Madison, USA. p. 55-88.
Gifford R.M. 1986. Partitioning of photosynthate in the development of crop yield. In: Phloem transport. J. Cronshaw, W.J. Lucas and R.T. Gianquinto (Eds.). A.R. Liss, New York. p. 535-549.
Lambers, H., Cambridge, M.L., Koniings, H. and Pons, T.L. 1990. Causes and consequences oj variations in growth rate and productivity oj higher plants. SPB Academic Publishing, The Hague.
Langer, S., Frey, K.J. and Bailey, T. 1979. Associations among productivity production response and stability index in oat varieties. Euphytica 28: 17-24.
Pinthus, MJ. 1973. Estimate of genotypic value: a proposed method. Euphytica 22: 121-123.
Wallace, D.H., Baudoin, J.P., Beaver, J., Coyne, D.P., Halseth, D.E., Masaya, P.N., Munger, H.M., Myers, J.R., Silbernagel, M.; Yourstone, K.S. and Zobel, R.W. 1993. Improving efficiency of breeding for higher crop yield. Theoretical and Applied Genetics 86: 27-40.
Wricke, G. 1962. Uber eine methode zur erfassung der okologischen streubreite in feldvercuchen. Z. Pflanzenzuechtung 47: 92-96.