Malaysian Applied Biology Journal

  • Increase font size
  • Default font size
  • Decrease font size


E-mail Print PDF

Malays. Appl. Bioi. (December 2004) 33(2): 19-25





Department of Zoology, D.D.U. Gorakhpur University,

Gorakhpur 273009, India E-mail: ajaisrivastav@hotmail. Com


Freshwater catfish, Heteropneustes fossilis were subjected to 5.28 mg/L (80% of 96 h LC50) and 1.32 mg/L (20% oi 96 h LC50) of Metacid-50 for short-term and long-term, respectively. The fish were sacrificed on 24, 48, 72 and 96 h in short-term experiment and 7, 14, 21 and 28 days in long-term experiment. The blood was collected on these intervals and plasma calcium and phosphate levels were determined. In short-term experiment, the plasma calcium levels oi Metacid-50 treated fish exhibit a decline after 24 h. This decrease continues till the close of the experiment (96 h). Up to 48 h following Metacid-50 exposure the plasma phosphate levels of the fish remain unaffected. From 72 h onwards, the levels decrease progressively. Chronically exposed fish to Metacid-50 exhibit a decrease in the plasma calcium levels at day 7. Thereafter, the levels progressively decrease till the end of the experiment (28 days). In Metacid-50 treated fish the plasma phosphate levels show a decrease on days 7 and 14. However, on days 21 and 28, the levels become almost close to the control level. This may be due to the redistribution of phosphate in the soft tissues, The results obtained in the present study may be applied to the field-collected samples and the levels of plasma calcium and plasma phosphate in the fish could be considered as biomarkers of the Metacid-50 contamination in the field.


Ikan keli air tawar, Heteropneustes fossilis, telah didedahkan kepada Metacid-50 pada tahap 5.28 mg/L (80% 9i jam LC50) dan 1.32 mg/L (20% 96 jam LC50) untuk jangka-masa pendek dan panjang masing-masing. Ikan dimatikan selepas 24, 48, 72 dan 96 jam dalam eksperimen jangka-masa pendek, dan 7, 14, 21 and 28 hari dalam eksperimer jangka-masa panjang. Sample darah diambil pada waktu-wkktu berkenaan dan tahap kalsium dan fosfat dalam plasma ditentukan. Dalam eksperimen jangka-masa pendek, aras kalsium dalam plasma ikan yang diberi Metacid-50 menunjukkan penurunan selepas 24 jam dan berlanjutan sehingga akhir eksperimen (96 jam). Selepas 72 jam aras menurun secara progresif. Ikan yang didedah secara kronik kepada Metacid-50 menunjukkan penurunan aras kalsium dalam plasma pada hari ke-7. Selepas itu, aras menurun secara progresif sehingga tamat eksperimen (28 hari). Ikan yang didedahkan kepada Metacid-50 menunjukkan penurunan aras fosfat pada hari ke-7 dan 14 tetapi pada hari ke-21 dan 28, aras tidak banyak berbeza daripada ikan kawalan. Ini mungkin disebabkan oleh agihan semula fosfal dalam tisu. Hasil kajian ini menunjukkan kemungkinan menggunakan aras kalsium dan fosfat dalam plasma ikar sebagai tanda untuk mengesan pencemaran oleh Metacid-50 dilapangan.

Key words: Plasma calcium, Plasma phosphate, Metacid-50, Fish, Organophosphate.


Abu-Qare, A.W., Abdel-Rahman, A, Brownie, C., Kishk, A.M. & Abou-Donia, M.B. 2001. Inhibition of cholinesterase enzymes following a single dermal dose of chlorpyrifos and methyl parathion, alone and in combination, in pregnant rats. Journal of Toxicology ana Environmental Health, 63 A: 173-189.

Akram, M., Hafeez, M.A. & Nabi, G. 1999. Histopathological changes in the kidney of a freshwater cyprinid fish, Barilius vagra, following exposure to cadmium. Pakistan Journal of Zoology, 31: 77-80.

Bano, Y. 1982. Effect of aldrin on serum and liver constituents of freshwater catfish Glorias batrachus (L.). Proceedings of Indian Academy of Sciences (Animal Sciences), 91: 27-32.

Bansal, S.K., Verma, S.R., Gupta, A.K. & Dalela, R.C. 1979. Physiological dysfunction of the haemopoietic system in a frshwater teleost Labeo rohita following chronic chlordane exposure. I. Alteration in certain hematological parameters. Bulletin oj Environmental Contamination and Toxicology, 22: 666-673.

Bhattacharya, S. & Jash, N.B. 1981. In vivo inhibition and recovery of acetylcholinesterase in the brain of the freshwater teleost, Channa punctatus (Bloch), during and after exposure to Carbofuran. Comparative Physiology and Ecology, 6: 330-332.

Colvin, HJ. & Phillips, A.T. 1968. Inhibition of electron transport enzymes and cholinesterase by endrin. Bulletin of Environmental Contamination and Toxicoloev. 3: 106—115.

Dalela, R.C., Rani, S., Kumar, V. & Verma, S.R. 1981. In vivo hematological alteration in a freshwater teleost Mystus vittatus following subacute exposure to pesticides and their combination. Journal of Environmental Biology, 2: 79.

Eisler, R. 1967. U.S. Bur. Sport Fish. Wildl. Tech. Paper 17, pp 15. In "Pesticides and Ecology", (Edwards, R.P., ed.), pp. 213-251.

Flik, G., Wendelaar Bonga, S.E., Kolar, Z., Mayer Gostan, N. & Fenwick, J.C. 1985. Environmental effects of Ca2+ uptake in the cichlid teleost Oreochromis mossambicus. In "Fish Culture", p. A 6.4, Promociones Publicaiones Universitarias, Barcelona.

Fragoso, D.B., Guedes, R.N., Guedes, R.N., Picanco, M.C. & Zambolim, L. 2002. Insecticide use and organophosphate resistance in the coffee leaf miner Leucoptera coffeella (Lepidoptera : Lyonetiidae). Bulletin of Entomological Research, 92: 203-212.

Fulton, M.H. & Key, P.B. 2001. Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environmental Toxicological Chemistry, 20: 37-45.

Giles, M. 1984. Environmental and water balance in plasma and urine of rainbow trout (Sahno gairdneri) during chronic exposure to cadmium. Canadian Journal of Fish and Aquatic Science, 41: 1678-1685.

Gill, T.S., Pande, J. & Tewari, H. 1991. Efffects of endosulfan on the blood and organ chemistry of freshwater fish Barbus conchonius (Ham.). Ecotoxicology and Environmental Safety, 21: 80-91.

Greene, J.K., Turnipseed, S.G., Sullivan, M.J. & May, O.L. 2001. Treatment threshholds for stink bugs (Hemiptera : Pentatomidae) in cotton. Journal of Economic Entomology, 94: 403-409.

Haux, C. 1979. Effects of DDT on blood plasma electrolytes in the flounder Platichthys flesus L. in hypotonic brackish water. Ambio, 8: 171-173.

Haux, C. & Larsson, A. 1984. Long term sublethal physiological effects on rainbow trout, Salmo gairdneri, during exposure to cadmium and after subsequent recovery. Aquatic Toxicology, 5: 129-142.

Fash, N.B. & Bhattacharya, S. 1983a. Delayed toxicity of carbofuran in freshwater teleosts, Channa punctatus (Bloch) and Anabas testudineus (Bloch). Water Air Soil Pollution, 19: 209-213.

Fash, N.B. & Bhattacharya, S. 1983b. Phenthoate-induced changes in the profiles of acetylcholinesterase and acetylcholine in the brain of Anabas testudineus (Bloch): Acute and delayed effect. Toxicology Letters, 15: 349-356.

Koelle, G.B. 1975. Drug acting at synaptic and neuroeffector junctional sites. In: The Pharmacological Basis of Therapeutics (Goodman, L.S. and Oilman, A. Eds.), 5th ed.,Chaps. 21-23. Macmillan Co., New York.

Koyama, J. & Itazawa, Y. 1977. Effects of oral administration of cadmium on fish. I. Analytical results of the blood and bones. Bulletin of Japanese Society Science Fisheries., 43: 523-526.

Kumar, S. & Pant, S.C. 1985. Renal pathology in fish (Puntius conchonius Ham.) following exposure to acutely lethal and sublethal concentrations of monocrotophos. Bulletin of Environmental Contamination and Toxicology, 35: 228-233.

Kuroshima, R. 1987. Cadmium accumulation and its effect on calcium metabolism in the Girella Girella punctata during a long term exposure. Nippon Suisan Gakkaishi, 53: 445-450.

Larsson, A., Bengtsson, B.E. & Haux, C. 1981. Disturbed ion balance in flounder Platichthys flesus L., exposed to sublethal levels of cadmium. Aquatic Toxicology, 1: 19-35.

Larsson, A., Bengtsson, B.E. & Svanberg, O. 1976. Some hematological and biochemical effects of cadmium on fish. In " Effects of Pollutants on Aqautic Organisms", (Lockwood, A.M.P., ed.), pp. 35-45, Cambridge Univ. Press, London.

Mayer-Gostan, N. & Naon, R. 1992. Effects of ambient ion concentrations on gill ATPase in freshwater eel Anguilla anguilla. Fish Physiology and Biochemistry, 10: 75-89.

Muramoto, S. 1981. Vertebral column damage and decrease of calcium concentrations in fish exposed experimentally to cadmium. Environmental Pollution (Ser. A), 24: 125-133.

Nath, K., Kumar, N. & Srivastav, Ajai K. 1997. Chromium induced histological alterations in the gills of a freshwater teleost Colisa fasciatus. Fish Biology and Journal of Medaka, 9: 37-40.

Norman, A.W. & Litwack, G. 1987. Hormones. Pp. 355-396, Academic Press Inc.

Pan, G. & Dutta, H.M. 1998. The inhibition of brain acetylcholinesterase activity of juvenile largemouth bass Micropterus salmoides by sublethal concentrations of diazinon. Environmental Research, 79: 133-137.

Part, P. & Lock, R.A.C. 1983. Diffusion of calcium, cadmium and mercury in a mucous solution from rainbow trout. Comparative Biochemistry and Physiology, 76C: 259-263.

Pratap, H.B., Fu, H., Lock, R.A.C. & Wendelaar Bonga, S.E. 1989. Effect of water borne and dietary cadmium on plasma ions of the teleost Oreochromis mossambicus in relation to water calcium level. Archives of Environmental Contamination and Toxicology, 18: 568-575.

Quistad, G.B. & Casida, J.E. 2000. Sensitivity of blood clotting factors and digestive enzymes to inhibition by organophosphorus pesticides. Journal of Biochemistry and Molecular Toxicology, 14: 51-56.

Roch, M. & Maly, E.J. 1979. Relationship of cadmium induced hypocalcemia with mortality in rainbow trout (Salmo gairdneri) and the influence of temperature on toxicity. Journal of Fisheries Research Board of Canada, 36: 1297-1303.

Sastry, K.V. & Malik, P.V. 1979. Studies on the effect of dimecron on the digestive system of a freshwater fish Channa punctatus. Archives of Environmental Contamination and Toxicology, 8: 397-407.

Sastry, K.V. & Sharma, S.K. 1978. The effect of endrin on the histopathological changes in the liver of Channa punctatus. Bulletin of Environmental Contamination and Toxicology, 20: 674-677.

Sharma, M.L., Agarwal, V.P., Awasthi, A.K. & Tyagi, S.K. 1982. Hematological and biochemical characteristics of Heteropneustes fossilis under the stress of congo red (diphenyl diszabine pthionic acid). Toxicology Letters, 14: 237-240.

Simkiss, K. 1967. Calcium in Reproductive Physiology. Chapman and Hall, London.

Singh, N.N., Das, V.K. & Singh, S. 1996. Effect of aldrin on carbohydrate, protein and ionic metabolism of a freshwater catfish, Heteropneustes fossilis. Bulletin of Environmental Contamination and Toxicology, 57: 204-210.

Singh, N.N., Das, V.K. & Srivastava, A.K. 1997. Formothion and propoxur induced ionic imbalance and skeletal deformity in a catfish, Heteropneustes fossilis. Journal of Environmental Biology, 18: 357-363.

Srivastav, Ajai K., Srivastava, S.K. & Srivastava, A. K. 1997. Response of serum calcium and inorganic phosphate of freshwater catfish, Heteropneustes fossilis, to chlorpyrifos. Bulletin of Environmental Contamination and Toxicology, 58:915-921.

Srivastava, S.K., Tiwari, P.R. & Srivastav, Ajai K. 1989. Chlorpyrifos induced histological changes in the gill of freshwater catfish Heteropneustes fossilis. Boletim de Fisiologia Animate, 13: 23-28.

Srivastava, S.J., Singh, N.D., Srivastava, A.K. & Sinha, R. 1995. Acute toxicity of malachite green and its effect on certain blood parameters of a catfish Heteropneustes fossilis. Aquatic Toxicology, 31: 241-247.

Swartz, W.J. 1981. Long-and short-term effects of carbaryl exposure in chick embryos. Environmental Research, 26: 463—471.

Wakgari, W.M. & Giliomee, J.H. 2003. Natural enemies of three mealybug species (Hemiptera : Pseudococcidae) found on cytrus and effects of some insecticides on the mealybug parasitoid Coccidoxenoides peregrinus (Hymenoptera : Encyrtidae) in South Africa, Bulletin of Entomological Research, 93: 243-254.

Wild, D. 1975. Mutagenicity studies on organophosphorus insecticides. Mutation Research, 32: 133-150.


Main Menu