Malaysian Applied Biology Journal

  • Increase font size
  • Default font size
  • Decrease font size

05_IsmanizanI

E-mail Print PDF

Malays. Appl. Biol. (June 2004) 33(1): 27-35

RECOVERY OF TRANSGENIC CHILI USING COTYLEDONARY NODES VIA AGROBACTERIUM TUMEFACIENS-MEDIATED

TRANSFORMATION

ISMANIZAN, I*, ZAMRI, Z. and SITI- NORLIDAH, T.

School of Biosciences and Biotechnology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.

Email : This e-mail address is being protected from spambots. You need JavaScript enabled to view it

ABSTRACT

Agrobacterium-mediated transformation in chilli (Capsicum annuum) has been limited mainly due to difficulties in regeneration of explant material. By using cotyledonary nodes, an improved protocol was developed. Agrobacterium lumefaciens LBA 4404 strain harboring the binary vector pCAMBIA 1301, carrying the uid A gene encoding GUS ((3-glucuronidase) enzyme and hygromycin phosphotransferase (HPT) gene as a selectable marker, was used to inoculate cotyledonary nodes in wounded site. After 21 days of incubation in solid Murashige and Skoog medium without growth regulators (MSO), 80% of the explants generated shoots. Selection of the transformants was carried out at the rooting phase where 10 mg T1 hygromycin-B was added to the rooting medium. About 40% of the shoots survived and produced numerous roots in this medium. Transient p-glucuronidase (GUS) activity was used to monitor the transformation event. Approximately 8% of the putative transformed lines analysed were GUS positive with histochemical assay. The presence of introduced gus and hpt genes in transgenic plants was confirmed by polymerase chain reaction analysis.

ABSTRAK

Kaedah transformasi cili berperantarakan Agrobacterium didapati amat terhad kerana kesukaran dalam proses regenerasi. Dalam kajian ini, satu protokol telah di bina dengan menggunakan nodul kotiledon. Bakteria Agrobacterium tumefaciens strain LBA 4404 yang membawa vektor binari pCAMBIA 1301 serta mengandungi gen uid A yang mengkodkan enzim GUS dan gen higromisin fosfotransferase (HPT) sebagai penanda pemilihan telah digunakan untuk menginokulasi nodul totiledon pada kawasan terluka. Selepas eraman selama 21 hari dalam media Murashigee and Skoog tanpa pengawalaturan rertumbuhan (MSO), 80% eksplan berjaya menjana pucuk. Pemilihan transforman di lakukan pada peringkat pengakaran di mana 10 mg/ml telah di tambah ke dalam medium pengakaran. Hampir 40% pucuk terus hidup dan menghasilkan ikar yang banyak dalam medium ini. Aktiviti transien P-glucuronidase (GUS) di gunakan untuk memantau proses iransformasi. Lebih kurang 8% titisan transforman putatif yang di analisis memberikan keputusan positif dalam asai histokimia GUS. Kehadiran gen gus dan hpt dalam tumbuhan transgenik cili di sahkan melalui analisis tindakbalas :»limerase.

Key words: Capsicum annuum, b-Glucuronidase, in vitro regeneration, organogenesis, T-DNA

REFERENCES

Aoki, T. Kamizawa. A and Ayabe, S. 2002. Efficient Agrobacterium-mediated transformation of Lotus japonicus with reliable antibiotic selection. Plant Cell Reports, 21: 238-243

Dong, C.Z., Jiang, C.X., Feng, L.X. and Guo, J.Z. 1992. Transgenic pepper plants (Capsicum annuum) conatining CMV sat-RNA cDNA. Acta Horticulturae Sinica, 19: 184-185

Finnegan, J. and McElroy, D. 1994. Transgene inactivation: plants fightback. Biotechnology, 12: 883-888.

Green, S.K. 1992. Virus in Asia/Pasific region Proceedings of the Conference on Chilli pepper Production in the Tropics, 98-129.

Hatanaka, H., Choi, Y.E., Kusano, T. and Sani, H. 1999. Transgenic plants of coffe Coffe canephora from embryogenis callus via Agrobacterium tumefaciens-mediated transformation. Plant Cell Reports, 19: 106-110.

Hoekema, A., Hirsch, P.R., Hooykaas, P.J. and Schilperoort, R.A. 1983. A binary plant vector strategy based on separation of vir and T-region of the A. tumefaciens Ti-plasmid. Nature, 303: 179-180.

Ismail, I, Zainal. Z., Sidik, N.M. and Fen, P.Y. 2001. Genetic transformation of Capsicum annuum by Agrobacterium rhizogenes. Asia Pasific Journal of Molecular Biology and Biotechnology, 9: 31-37.

Jayashankar, S. 1998. Comparison of different in vitro regeneration and genetic transformation strategies for chille pepper (Capsicum annuum) PhD dissertation, New Mexico State University, Las Cruces.

Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. 1987. GUS fusions: (3-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal, 6: 3901-3907.

Kosugi, S., Ohashi, Y., Nakajima, K. and Aral, Y. 1990. An improved assay for (3-glucuronidase in transformed cells: methanol almost completely supresses a putative endogenous (3-glucuronidase activity. Plant Science, 70: 133-140.

Loo, S. and Rine, J. 1994. Silencer and domains of generalized repression. Science, 264: 1768-1771.

Manoharan, M., Sree Vidya, C.S. and Lakshmi Sita, G. 1998. Agrobacterium-mediated genetic transformation of hot chilli (Capsicum annuum L.var.Pusajwala). Plant Science, 131: 77-83.

Matzke, M.A. and Matzke, A.J.M. 1995. How and why do plants inactive homologos (Trans)genes?. Plant Physiology, 107: 679-685.

Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497.

Ochoa-Alejo, N. and Ramirez-Malagon, R. 2001. In vitro chilli pepper biotechnology. In Vitro Cell Developmental Bio. I Plant, 37:701-729.

Oger, P., Petit, A. and Dessaux, Y. 1996. A simple technique for direct transformation and regeneration of the diploid legume species Lotus japonicus. Plant Science, 116: 159-168.

Olhoft, P.M., Flagel, L.E., Donovan, C.M. and Somers, D.A. 2003. Efficient soy bean transformation using hygromycin-B selection in the cotyledonary-node method. Planta, 216: 723-735.

Pena, L., Cervera, M., Juarez, J., Ortega, C., Pina, J.A., Duran-Vila, N. and Navarro, L. 1995. High efficiency Agrobacterium-mediated transformation and regeneration of Citrus. Plant Science, 104: 183-191.

Philips, G.C., Valera-Montero L.L., Fan, Z., Jayashankar, S., Hubstenberger, J.F. and Watkins, D.D. 2000. Chile improvement through biotechnology: In vitro regeneration and genetic transformation. New Mexico Chile Pepper Institute, Chile Conference Las Cruces.

Pozueta, R.J., Houlne, G., Canas, L., Schantz, R, and Chamarro, J. 2001. Enhanced regeneration

of tomato and pepper seedling explants for Agrobacterium-mediated transformation. Plant Cell, Tissue Organ Culture, 67: 173-180.

Reckens, S., De Greve, H., Van Montagu, and Hernalsteens, J.P. 1992. Petunia plants escape from negative selection against a transgene by silencing the foreign DNA via methylation. Molecular General Genetic, 233: 53-64.

Singh, J.H. and Cheema, D.S. 1989. Present status of tomato and pepper production in the tropics. Proceeding of the International Symposium On Integrated Management Pratices, 452-471.

zuki, S., Supaibulwatana, K., Mii, M. and Nakano, M. 2001. Production of transgenic plants of Liliaceous ornamental plant Agapanthus praecox ssp. orientalis (Leighton) Leighton via Agrobacterium-mediated transformation of embryogenic calli. Plant Science, 161: 89-97.

Townsend, J.A. and Thomas, L.A. 1993. An improved method of Agrobacterium-transformation of cultured soybean cells. Patent W094/02620.

Wang, Y.W., Yang, M.Z., Pan, N.S. and Chen, Z.L. 1991. Plant regeneration and transformation of sweet pepper (Capsicum frutescens). Acta Botanical Sin, 33, 780-786.

Zhang, Z., Zhou, Z., Liu, Y., Jiang, Q., You, M., Liu, G., Mi, J., Zhang, Z.J., Zhou, Z.X., Liu., Y.J., Jiang, Q.Y., You, M., Liu, G.M. and Mi, J.J. 1994. CMVcp gene transformation into pepper and expression in the offspring oi the transgenic plants. Act Agricult Bor Sin, 9: 67-71.

Zhu, Y.X., Ouyang, W.J., Zhang, Y.F. and Chen, Z.L. 1996 Transgenic sweet pepper plants from Agrobacterium mediated transformation. Plant Cell Reports, 16: 71-75.

 

Main Menu