Malaysian Applied Biology Journal

  • Increase font size
  • Default font size
  • Decrease font size

06_MahmoodH

E-mail Print PDF

Malays. Appl. Biol. (June 2004) 33(1): 37-45

ALLOMETRIC RELATIONSHIPS FOR ESTIMATING ABOVE AND

BELOW GROUND BIOMASS OF SAPLINGS AND TREES OF

BRUGUIERA PARVIFLORA (WHITE AND ARNOLD)

MAHMOOD H.1*, SABERI, O.2, JABAR-SIDIK, B.1, MISRI, K.1 and RAJAGOPAL, S.1

*1Department of Biology, Faculty of Science and Environmental Studies

Universiti Putra Malaysia, 43400 UPM, Serdang

Selangor, D.E. Malaysia

E-mail: biplob_72@hotmail. Com

2Faculty of Science and Technology Universiti Pendidikan Sultan Idris,

Tanjung Malim, Perak, Malaysia.

ABSTRACT

Allometric relationships between biomass of different components of saplings and trees of Bruguiera parviflora and diameter at breast height (DBH) were established and biomass proportion at different components of saplings and trees were also estimated. Linear relationships were observed when the biomass of individual component of saplings and trees were plotted against diameter at breast height (DBH) on a log-log scale. All regression equations both for saplings and trees were highly significant (p<0.05) and the regression co-efficient values found to exist above 0.89 except the sapling roots. Significant (p<0.05) differences in regression slopes and co-efficients were observed for all the components of saplings and trees. The mean percentage of total above and below-ground biomass of saplings and trees were 84.29 and 88.79%; 15.71 and 11.21%, respectively.

ABSTRAK

Hubungan alometri di antara biojisim dan diameter pada paras dada (DBH) bagi komponen-komponen berbeza anak-anak pokok dan pokok dewasa Bruguiera parvifolia telah diwujudkan, dan nisbah biojisim bagi komponen berbeza anak-anak pokok dan pokok dewasa juga dianggarkan. Pertalian linear telah diperhatikan apabila biojisim bagi komponen individu anak pokok dan pokok dewasa diplotkan melawan DBH pada skala log-log. Semua persamaan regresi bagi anak pokok dan pokok dewasa adalah amat signifikan (p<0.05) dan nilai-nilai pekali regresi adalah melebihi 0.89, kecuali akar anak pokok. Perbezaan yang signifikan (p<0.05) bagi kecerunan-kecerunan negresi dan pekali-pekali dilihat pada semua komponen anak-anak pokok dan pokok dewasa. Min peraturan biojism atas tanah dan bawah tanah bagi anak-anak pokok dan pokok dewasa adalah masing-masing 84.29% dan 88.79%; 15.71 dan 11.21%.

Key words: Allometric relationship, above and below-ground biomass, mangroves and Bruguiera parviflora

REFERENCES

Anon 1986. Annual Report of the Forestry Department, Peninsular Malaysia. Forest Department Publication. 165 pp.

Causto, D.R. and Venus, J.C. 1981. The Biometry of Plant Growth. Arnold, London.452 pp.

Chapman, J.V. 1976. Mangrove Vegetation. Strauss & Cramer GmbH, Leutershausen, Germany. 425 pp.

Cintron, G. and Novelli, S.Y. 1984. Methods for studying mangrove structure. In: The mangrove ecosystem: research methods. C.S. Snedaker and J.G. Snedaker (Eds.). Unesco, United Kingdom, pp. 91-113.

Clough, B.F. 1992. Primary productivity and growth of mangrove forests. In Tropical Mangrove Ecosystem, Coastal and Estuarine Studies 41. A.I. Robertson and D.M. Alongi (Eds.), American Geophysical Union, Washington DC. pp. 225-250.

Zlough, F.B. and Scott, K. 1989. Allometric Relationships for Estimating Above-Ground Biomass in Six Mangrove Species. Forest Ecology and Management, 27: 117-127.

Gong, K.W. and Ong, EJ. 1990. Plant biomass and nutrient Flux in a Managed mangrove Forest in Malaysia. Estuarine Coastal and Shelj Science, 31: 519-530.

Ketterings, M.Q., Coe, R., Noordwijk, M.V., Amagau, Y. and Palm, A.C. 2001. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forest. Forest Ecology and Management, 146: 199-209.

Komiyama, A., Havanond, S., Srisawatt, W., Mochida, Y., Fujimoto, K., Ohnishi, T., Ishihara, S. and Miyagi, T. 2000. Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr.) C.B. Rob.) forest. Forest Ecology and Management, 139: 127-134.

Komiyama, A., Ogino, K., Adsornkoa, S. and Sabhasri, S. 1987. Root biomass of a mangrove forest in southern Thailand, I. Estimation by the trench method and the zonal structure oi root biomass. Journal of Tropical Ecology, 3: 97-108.

Ong, I.E., Gong, W.K. and Wong, C.H. 1985. Seven Years of Productivity Studies in a Malaysian Managed Mangrove Forest, then What? In: Coastal and Tidal Wetlands of the Australian Monsoon Region. N.K. Bardsley, S.D.J. Davie and D.C. Woodroffe (Eds.). Australian National University, pp. 213-223.

Putz, E.F. and Chan, H.T. 1986. Thee Growth, Dynamics and Productivity in a Mature Mangrove Forest in Malaysia. Forest Ecology and Management, 17: 211-230.

Steinke, D.T., Ward, C.J. and Rajh, A. 1995. Forest structure and biomass of mangroves in the Mgeni estuary, South Africa. Hydrobiologia, 295: 159-166.

Tarn, Y.F.N., Wong Y.S., Lan, C.Y. and Chen, G.Z. 1995. Community structure and standing crop biomass of a mangrove forest in Putin Natural Reserve, Shenzhen, Chaina. Hydrobiologia, 295: 193-201.

Tamai, S., Tsuneo, N., Tabuchi, R. and Ogino, K. 1986. Standing Biomass of Mangrove Forests in Southern Thailand. Journal of Japan Forest Science, 68(9): 384-388.

Tomlinson, P.B. 1986. The Botany of Mangroves. Cambridge University Press. U.K. 419 pp.

Turner, M.T., Gong, K.W., Ong, E.J., Japai Sidik, B. and Kohyama, T. 1995. The architecture and allometry of mangrove saplings. Functional Ecology, 9: 205-212.

Watson, G.J. 1928. Malayan forest Record 6: Mangrove Forests of the Malay Peninsula. Fraser and Neave Ltd, Singapore. 456 pp.

Whittaker, R.H. and Marks, P.L. 1975. Methods of assessing terrestrial production. In: Primary Productivity of the Biosphere. H. Lieth and R.H. Whittaker (Eds.). Springer, New York, pp. 55-188.

 

Main Menu