Malaysian Applied Biology Journal

  • Increase font size
  • Default font size
  • Decrease font size


E-mail Print PDF

Malays. Appl. Biol. (June 2004) 33(1): 53-60




HOW, S.P., OOI, A.N. and IBRAHIM, C.O.*

Fermentation and Enzyme Technology Laboratory,

School of Biological Sciences, Universiti Sains Malaysia,

Minden, 11800 Penang, Malaysia.


An indigenous fungal isolate which was identified as Aspergillus terreus USM E5 was selected as a potential producer of lipase using solid state fermentation (SSF) with rubberwood saw dusts as the substrate. Under the optimized cultivation conditions consisting of temperature 30°C, average substrate particle size 0.5 mm, water content 100% (v/w), inoculum size 1 x 105 spores/ml and 10% (w/w) of olive oil as inducer, a maximum production of lipase of 18.3 U/g substrate and growth of 1.03 x 10"3 mg glucosamine/g substrate was obtained after 4 days of fermentation. The lipase productivity after optimization increased 3-folds with 4.58 U/g substrate/day compared to before optimization which was only 1.50 U/g substrate/day. The lipase production by the fungus is parallel to the growth profile of the fungus.


Satu pencilan kulat tempatan yang dicamkan sebagai Aspergillus terreus USM E5 telah dipilih sebagai penghasil lipase yang berpotensi menggunakan pemfermentasian keadaan pepejal (SSF) dengan habuk kayu getah sebagai substrat. Dibawah keadaan optimum yang terdiri daripada suhu 30°C, saiz substrat purata 0.5 mm, kandungan air 100% (i/b), saiz inokulum 1 x 105 spora/ml dan minyak zaitun 10% (b/b) sebagai bahan aruh, penghasilan maksimum sebanyak 18.3 U/g substrat dan pertumbuhan 1.03 x 10"3 mg glukosamina/g substrat diperoleh selepas 4 hari pemfermentasian. Daya pengeluaran selepas pengoptimuman meningkat 3 kali ganda sebanyak 4.58 U/g substrat/hari berbanding sebelum pengoptimuman yang hanya sebanyak 1.50 U/g substrat/hari. Penghasilan lipase oleh kulat ini adalah selari dengan profil pertumbuhan kulat.

Key words: solid state fermentation, Aspergillus terreus, lipase production, rubberwood saw dusts


Cardova, J., Nemmaoui, M., Ismaili-Alaoui, M., Morin, A., Roussos, S. Raimbault, M. & Benjilali, B. 1998. Lipase production by solid state fermentation of olive cake and sugar cane baggase. Journal of Molecular Catalysis B: Enzymatic, 5: 75-78.

Filer, K. 2001. Commercial enzyme production using solid state fermentation technology. International Conference on New Horizons in Biotechnology. India, pp 23.

Gervais, P., Berlin, J.M., Grajek, W. & Sarrate, M. 1988. Influence of water activity on aroma production by Trichoderma viride TS growing on solid substrate. Journal of Fermentation Technology, 66: 403-407

Gibbons, W.R. & Westby, C.A. 1987. Effect of fodder beet cube size on ethanol production via diffusion fermentation. Biotechnology Letters, 7: 135-138

Oilman, J.C. 1957. A manual of soil fungi. 2nd Edition. Iowa Sate College Press, Ames, 197-235 pp.

Ibrahim, C.O. 1997. Biotechnology of lipolytic enzymes for the oleochemical industries: A research perspective. Journal ofBioscience, 8: 71-93.

Ibrahim C.O., Hayashi, M. & Nagai, S. 1987a. Purification and some properties of a thermostable lipase from Humicola lanuginosa No. 3. Agricultural Biological Chemistry, 51: 37-45.

Ibrahim C.O., Nishio, N. & Nagai, S. 1987b. Production of a thermostable lipase by Humicola lanuginosa. Hakko Kogaku Kaishi, 66: 411-413.

Ibrahim C.O., Noor Izani, N.J. & Darah, I. 1991. Isolation and identification of exogenous lipase producing fungi using palm oil medium. Journal Bioscience, 2: 59-69.

Ibrahim C.O. & Nooraini, I. 1996. Characteristics of cell bound lipase production from a newly isolated strain of Aspergillus flavus. Pertanika Journal of Science & Technology, 4: 1128-1135.

Leong, S.Y. & Ibrahim, C.O. 2000. Optimization of solid state fermentation for benzyldehyde production by a locally isolated Penicillium diversum using palm kernel cake (PKC) as substrate. Pakistan Journal of Biological Sciences, 3: 1752-1754.

Mustranta, A., Forssell, P. & Poutanen, K. 1993. Applications of immobilized Upases for transesterification and esterification reactions in non-aqueous systems. Enzyme Microbial Technology., 2: 273-139.

Ng, W.K., Lim H.A., Lim, S.L. & Ibrahim, C.O. 2002. Nutritive value of palm kernel meal pretreated with enzyme or fermented with Trichoderma koningii (Oudemans) as a dietary ingredient for red hybrid tilapia (Oreochromis sp.). Aquaculture Research, 33: 1199-1207.

Raimbault, M. 1998. General and microbiological aspects of solid substrate fermentation. Electronic Journal of Biotechnology 1: 1-15.

Smits, J.P., Rinzema, A., Tramper, J., van Sonsbeek, H.M., Hage, J.C., Kaynak, A. & Knol, W. 1998. The influence of temperature on kinetics in solid state fermentation. Enzyme and Microbial Technology. 22: 50-57.

Solis-Pereyra, S., Favela-Torres, E., Gutierrez-Rojas, M., Roussos, S., Saucedo-Castaneda, G., Gunasekaran, P. & Viniegra-Gonzalez, G. 1996. Production of pectinases by Aspergillus niger in solid state fermentation at high initial glucose concentration. World Journal of Microbiology and Biotechnology. 12: 257-260. Swift, M.J. 1972. The estimation of mycelial biomass by determination of the hexosamine content of wood tissue decayed by fungi. Soil Biological Biochemistry, 5: 321-332.

Szewczyk, K.W. & Myszka, L. 1994. The effect of temperature on the growth of Aspergillus niger in solid state fermentation. Bioprocess Engineering, 10: 123-126.


Main Menu