Malaysian Applied Biology Journal

  • Increase font size
  • Default font size
  • Decrease font size

08_WickneswariR

E-mail Print PDF

Malays. Appl. Biol. (June 2002) 31(1): 49-58

GENETIC DIVERSITY IN POTENTIAL SEED SOURCES OF CALAMUS MANAN MIQ. IN PENINSULAR MALAYSIA

WICKNESWARI, R.,i* SITI-SALWANA, H.,2 NORWATI, M.,2 NUR-SUPARDI, M.N.2 and AMINUDDIN, M.3

!* School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor.

2 Forest Research Institute Malaysia Kepong, 52109 Kuala Lumpur, Malaysia.

3 Universiti Malaysia Sabah, KM 19, Tuaran Road, Locked Bag 2073, 88999 Kota Kinabalu, Sabah, Malaysia

ABSTRACT

This study was carried out to determine the genetic diversity within and between major seed sources of Calamus manan using isozyme analysis. 48 mature plants (21 female and 27 male plants) of C. manan from 3 planted populations viz. Sg. Yu, Pahang; Lanchang, Pahang; Bukit Lagong, Selangor and 1 natural population, Serting, Negeri Sembilan in Peninsular Malaysia were analysed using 14 loci representing 10 enzyme systems. Genetic diversity of about 980 seedlings of C.manan from Bukit Lagong, Sg. Yu, and Serting were also determined using 11 loci representing 9 enzyme systems. The mean observed (H0) and expected (He) heterozygosities in mature plants were 0.075 and 0.060 respectively indicating low genetic diversity for selection and improvement. The seedlings of C. manan assayed were more genetically depauperate (Bukit Lagong: H0 = 0.019, He = 0.030; Sg. Yu: H0 = 0.004 He = 0.005; Serting: H0 = 0.027, He = 0.043) than the mature plants indicating most probably inbreeding. The mean no. of alleles ranged from 1.1 to 1.4 in mature plants and from 1.2 to 1.3 in seedlings. The percentage of polymorphic loci (P) was 6.7 - 20.0% in mature plants. In seedlings P varied from 0 - 18.2%. In general, low genetic diversity was detected in C.manan both in mature plants as well as in seedlings, implying extensive genetic erosion in plantations. Efforts should be made to source seeds from wild populations of C. manan in Southeast Asia to realise genetic improvement and sustainable productivity of plantations.

ABSTRAK

Kajian ini dijalankan untuk menentukan kepelbagaian genetik di dalam dan di antara punca biji benih utama Calamus manan menggunakan analisis isozim. 48 pokok matang (21 betina dan 27 jantan) C. manan dari 3 populasi yang ditanam iaitu Sg. Yu, Pahang; Lanchang, Pahang; Bukit Lagong, Selangor dan 1 populasi semulajadi, Serting, Negeri Sembilan di Semenanjung Malaysia dianalisis dengan 14 lokus yang mewakili 10 sistem enzim. Kepelbagaian genetik sebanyak 980 anak pokok C. manan dari Bukit Lagong, Sg. Yu dan Serting juga ditentukan dengan 11 lokus yang mewakili 9 sistem enzim. Purata heterozigositi yang dicerap (H0) dan dijangka (He) bagi pokok matang adalah 0.075 dan 0.060 masing-masing. Ini menunjukkan kepelbagaian genetik yang rendah bagi pemilihan dan pembaikan. Anak pokok C. manan yang dikaji mempunyai kepelbagaian genetik yang lebih rendah (Bukit Lagong: H0 = 0.019, He = 0.030; Sg. Yu: H0 = 0.004 He = 0.005; Serting: H0 = 0.027, Hc = 0.043) daripada pokok matang. Ini mungkin menunjukkan berlakunya biakbaka dalam. Purata bilangan alel berjulat dari 1.1 hingga 1.4 dalam pokok matang dan dari 1.2 hingga 1.3 dalam anak pokok. Peratus lokus polimorfik (P) adalah 6.7 - 20.0% dalam pokok matang. Dalam anak pokok P adalah 0 - 18.2%. Secara umum, kepelbagaian genetik yang rendah dikesan dalam C. manan; samada pokok matang atau anak pokok mengimplikasikan hakisan genetik yang menyeluruh dalam ladang berkenaan. Usaha untuk mendapatkarj biji benih dari populasi semulajadi C. manan di Asia Tenggara perlu dijalankan supaya pembaikan genetik dan produktiviti ladang C. manan yang berkekalan tercapai.

Key words: genetic diversity, rattans, seed source evaluation, isozyme markers

REFERENCES

Aminuddin, M. 1990. Ecology and Silviculture of Calamus manan in Peninsular Malaysia. Ph.D thesis University of Wales. 250pp. Unpublished.

Aminuddin, M. and Salleh, M.N., 1994. Opportunities for commercial rattan planting in Malaysia. The Planter, 70: 113-117.

Bazin M., Chabin A. and Durand R. 1975. Comparison between four isoaccepting transfer ribonucleic acids and corresponding synthetases in male and female flowers of the dioecious species Mercurialis annua L. Developmental Biology, 44: 288-297.

Bon, M.C., Basri, H. A. B. and Joly, H.I. 1994. Genetic variability of two rattan species from isozyme markers. In: T.J.B. Boyle and B. Boontawee (eds.) Measuring and Monitoring Biodiversity in Tropical and Temperate Forests. Proceedings of the IUFRO Symposium held at Chiang Mai, August 28 - September 21, 1994, Thailand. Pp 219-225.

Brewbaker, J.L., Upadhya, M.D., Makinen, Y. and Macdonald, T. 1968. Isozyme polymorphism in flowering plants. III. Gel electrophoretic methods and applications. Physiologia Plantarum, 21: 930-940.

Brown, A.H.D., Nevo, E., Zohary, D. and Dagan, O. 1978. Genetic variation in natural populations of wild barley (Hordeum spontaneum). Genetica, 49: 97 - 108.

Clayton, J.W. and Tretiak, D.N. 1972. Amine-citrate buffers for pH control in starch gel electrophoresis. Journal of the Fisheries Research Board of Canada, 29: 1169 -1172.

Conkle, M.T 1992. Genetic diversity - seeing the forest through the trees. In: Adams, W.T., Strauss, S.H., Copes, D.L. & Griffin, A.R. (eds.) Population Genetics of Forest Trees, Kluwer Academic Publishers, Netherlands. Pp 67-94.

Delaigue, M., Poulain, T. and Durand, B. 1984. Phytohormone control of translatable RNA populations in sexual organogenesis of the dioecious species Mercurialis annua L. (2n=16). Plant Molecular Biology, 3: 419-429.

Delaigue, M., Poulain, T., Dabat, P., Cabre, E., Durabd, R. and Durand, B. 1986. Regulation of flower organogenesis: Phytohormone control of mRNA populations during sexual differentiation in Mercurialis annua L. Biology Plant, 28: 23-30.

Dransfield, J. 1979. A Manual Of The Rattan OJ The Malay Peninsula. Forestry Department Peninsular Malaysia. 270pp.

Eguiarte, L.E., Nasser, N.P. and Pinero, D. 1992. Genetic structure, outcrossing rate and heterosis in Astrocaryum mexicanum (tropical palm): Implication for evolution and conservation. Heredity, 69: 217 - 228.

Gan, Y.Y., Robertson, F.W., Ashton, P.S. and Soepadmo, E. 1981. Isozyme variation in some rainforest trees. Biotropica, 3: 20-28.

Gan, Y.Y., Robertson, F.W., Ashton, P.S., Soepadmo, E. and Lee, D.W. 1977. Genetic variation in wild populations of rainforest trees. Nature, 269: 371 - 378.

Hamrick, J.L. and Loveless, M.D. 1986. Isozyme variation in tropical trees: procedures and preliminary results. Biotropica, 18: 201 - 207.

Kahlem, G. 1975. A specific and general biochemical marker of stamen morphogenesis in higher plants: Anodic peroxidases. Z. Pflanzenphysiologie, 76: 80-85.

Kahlem, G. 1976. Isolation and localization by

histoimmunology of isoperoxidaes specific for

male flowers of the dioecious species

Mercurialis annua L. Developmental Biology,

50:58-67.

Kahler, A.L. and Allard, R.W. 1970. Genetics of

isozyme variants in barley. I. Esterase. Crop

Science, 10: 444 - 448.

Lopez, C.R., Dosrcis, S.F., Ferreira, M.A. and Moretzsohn, M.C. 1992. Genetics of the genus Acrocomia (palmae). III. Microgeographical genetic variability in isozyme frequencies. Journal of Genetics and Breeding, 46: 1,9-13.

Louis, J.P. 1983. Sexual differentiation in Mercurialis annua: Evidence for a control system of nucleocytoplasmic relationships by the study of tyrosyl-tRNA from developmental mutants of male sterility. Molecular General Genetics, 191: 473-479.

Manokaran N. 1985. Biological and ecological considerations pertinent to the silviculture of rattans. In: Wong K.M. and Manokaran N. (eds.). Proceedings of the Rattan Seminar, October 2-4, 1984, Kuala Lumpur. Pp. 95-106.

Mitton J.B. and Grant M.C. 1980. Observations on the ecology and evolution of quaking aspen, Populus tremuloides, in the Colorado Front Range. American Journal of Botany, 67(2): 202-209.

Moran, G. and Hopper, S.D. 1983. Genetic diversity and the insular population structure of the rare granite rock species. Eucalyptus caesia Benth. Australian Journal of Botany, 31: 161- 172.

Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583 - 590.


Rasip, A.G. 1997. Genetic diversity and breeding system in Endospermum malacense Mull (Sesenduk). Ph.D. thesis, Universiti Kebangsaan Malaysia, Bangi, Malaysia.

Sneath, P.H.A. and Sokal, R.R.1973. Numerical Taxonomy. W.H.Freeman, San Francisco.

Swofford, D.C. and Selander, R.B. 1989. Biosys-1 Manual. A computer program for the analysis ofallelic variation in population genetics and biochemical systematics. Illinois Natural History Survey, Champaign. 43pp.

Torres A.M. and Bisserat B. 1980. Leaf isozymes as genetic markers in date palm. American Journal of Botany, 67(2): 162-167.

Uhl, N.W. and J. Dransfield 1987. Genera Palmarum. A classification of palms based on the work of H.E. Moore Jr. L.H. Bailey Hortorium and International Palm Society, Kansas.

Wickneswari, R., Norwati, M., Siti Salwana, H., Nur Supardi, M.N. and Aminuddin. M 1997. Seed sources evaluation in Calamus manan Miq. Using isozyme markers. Paper presented at EEC-STD3 Steering Committee - Rattan Project FRIM, 24 - 28 February 1997, Kuala Lumpur.

Wickneswari, R. and Norwati, M. 1992. Techniques for starch gel electrophoresis of enzymes from Acacias. In: L.T. Carron and K. M. Aken (eds.). Breeding Technologies for Tropical Acacias. ACIAR Proceedings No. 37, ACIAR, Canberra. Pp. 88-100.

 

 

 

Latest MABJ Issue

Vol 50(1) June 2021

 

Table of content

Latest news!

Malaysian Applied Biology is listed in the databases and indexed in Web of Science Master Journal List, Elsevier, Mycite, Biosis, Zoological Records, UDLedge Life Science Index, CNKI, J-Gate and CABI.

Malaysian Applied Biology is indexed in Scopus since issue 41(1) 2012.

According to Scopus CiteScore 2020, MABJ ranks 165 out of 203 Malaysian journals in terms of yearly impact factor.


Scopus Citescore