Malaysian Applied Biology Journal

  • Increase font size
  • Default font size
  • Decrease font size


E-mail Print PDF
Malays. Appl. Biol. (December 2000) : 43-53


CHENG, H.S.1 and MANSOR, M.2

1 Wetlands International-Malaysia Programme, 3A31, Block A, Kelana Centre Point, No. 3, Jalan SS 7/19, 47301 Kelana Jaya Selangor, Malaysia
2 School of Biological Sciences, University Science Malaysia, 11800 Pulau Pinang, Malaysia


The rates of photosynthesis were studied on the four native aquatic plant species in the genus Cryptocoryne. The native aquatic plants used in the experiment were C. affinis, C. elliptica, C. cordata and C. minima. A widely distributed aquatic plant Hydrilla verticillata which was found dominantly in Malaysian freshwater ecosystem was used as a comparison in the study. The rates of O2 evolution from the process of photosynthesis of all the submerged plants were measured as a function of incident photon flux density at increasing inorganic carbon concentration from 5.0 to 15.0 raol m-3, and as a function of inorganic carbon concentration of 5.0 mol m-3 at pH 8.3 at saturating (20,000 W nr2) and r. limiting photon flux density (3,000 W m"2). The amount of HCO3- used by the plants was measured as a function of inorganic carbon intake ability based on pH-drift results. The pH-drift results suggested that all the four species of Cryptocoryne are able to use HCO3-. However, four Cryptocoryne species utilized HCO3- with low affinity when compared to H. verticillata. The results indicated that the highest amount of HCO3- used was achieved by H. verticillata (2.13 ± 0.32 mmol m-3), only then followed by C. cordata (1.34 ± 0.25 mmol m-3), C. elliptica (1.02 + 0.03 mmol m-3) and C. affinis (1.02 + 0.24 mmol m-3). The amount of HCO3- used by C. minima was less than 1.0 mmol m-3. Hydrilla verticillata showed the highest final pH value (pH 9.66), followed by C. minima pH 9.19 and C. affinis pH 9.18, whereas C. elliptica and C. cordata showed the same pH value 9.10. The final-pH compensation values which were higher than pH 9.0 showed that the four Cryptocoryne species were able to use CO2 and HCO3- as sources of carbon. It could be concluded that the tested plants which were reliant on CO2 diffusion for their carbon source, were also using ±e bicarbonate from the aquatic system.


Kadar fotosintesis telah dikaji ke atas empat spesies tumbuhan akuatik asli daripada genus Cryptocoryne. Tumbuhan alcuatik asli yang digunakan di dalam eksperimen ialah C. affinis, C. elliptica, C. cordata dan C. minima. Hydrilla verticillata, satu jenis tumbuhan akuatik yang bertabur luas dan dominan di ekosistem air tawar Malaysia digunakan sebagai bandingan dalam kajian ini. Kadar pelepasan O2 daripada proses fotosintesis tumbuh-tumbuhan terendam ini diukur sebagai satu fungsi bagi densiti fluks foton dalam siri kepekatan karbon tak organik yang meningkat dari 5.0 hingga 15.0 mol m-3, dan sebagai satu fungsi kepekatan karbon tak organik 5.0 mol m-3 pada pH 8.3 pada densiti fluks foton tepu (20,000 W m"2) dan terhad (3,000 W m"2). Jumlah HCO3" yang digunakan oleh tumbuhan diukur sebagai satu fungsi keupayaan pengambilan karbon tak organik berdasarkan keputusan perubahan pH. Perubahan pH menunjukkan keempat spesies Cryptocoryne mampu menggunakan HCO3-. Tetapi affiniti bagi spesies Cryptocoryne terhadap HCO3" adalah lebih rendah berbanding dengan H. verticillata. Keputusan menunjukkan jumlah HCO3" yang tertinggi digunakan oleh H. verticillata (2.13 ± 0.32 mmol m-3), diikuti oleh C. cordata (1.34 ± 0.25 mmol m-3), C. elliptica (1.02 + 0.03 mmol m'3) dan C. affinis (1.02 ± 0.24 mmol nr3). Jumlah HCO3- yang digunakan oleh C. minima adalah kurang daripada 1.0 mmol nr3. Hydrilla verticillata menunjukkan nilai pH akhir yang tertinggi (pH 9.66), diikuti oleh C. minima pH 9.19 dan C. affinis pH 9.18, manakala C. elliptica dan C. cordata menunjukkan nilai pH yang sama iaitu 9.10. Nilai pH pampasan akhir yang lebih daripada pH 9.0 menunjukkan kesemua empat spesies Cryptocoryne mampu menggunakan CO2 dan HCOf sebagai sumber karbon. Boleh disimpulkan bahawa tumbuhan yang dikaji bergantung kepada resapan CO2 untuk sumber karbon, di samping menggunakan bikarbonat dari sistem akuatik.

Key words: Aauatic plant, bicarbonate, Cryptocoryne, inorganic carbon, light, pH.


Allen, E. D. and Spence, D. H. N. 1981. The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters. New Phytologist, 87: 269-283.

Boston, H. L., Adams, M. S. and Madsen, J. D. 1989. Photosynthetic strategies and productivity in aquatic systems. Aquatic Botany, 34: 27-57.

Bowes, G. 1985. Pathways of CO2 fixation by aquatic organisms. Inorganic carbon uptake by aquatic photo synthetic organisms, American Society of Plant Physiologists, Rockville, Maryland, pp. 187-210.

Golterman, H. L., Clymo, R. S. & Ohnstad, M. A. M. 1978. Methods for physical and chemical analysis of freshwaters. Blackwell Scientific Publication, pp. 34-42.

Hassack, C. 1881. Heber das Verhaltnis von Pflanzen zu Bicarbonaten und uber kalkincrustation. Tubingen Botanische Institut Untersuchungen, 2: 465.

Maberly, S. C. 1990. Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae, Journal of Phycology, 26: 439-449.

Maberly, S. C. and Spence, D. H. N. 1983. Photosynthetic inorganic carbon use by freshwater plants. Journal of Ecology, 71: 705-724.

llackereth, F. J. H., Heron, J. and lulling, J. F. 1978. Water analysis: some revised methods of limnologists. Freshwater Biology Association Society Publication, 36: 1-120.

Manser, M. 1989. Utilization of several species of Malaysian aquatic plants as aquarium plants. In: The first international aquarium fish and accessories exhibition and conference, 15-18 June 1989, 1-12.

Mansor, M. 1996. Noxious floating weeds of Malaysia. Hydrobiologia, 340: 121-125, 1996. R. and Horeman, T. J. 1977. Aquarium plants their identification, cultivation and ecology. T. F. H. Publication Inc. Ltd. Great Britain. 480 pp.

Sand-Jensen, K. and Gordon, D. M. 1984. Differential ability of marine & freshwater macrophytes to utilize HCO3~ and CO2. Marine Biology, 80: 247-253.

Spencer, W. E. and Bowes, G. 1985. Limnophil£ & Hygrophila: a review and physiological assessment of their weed potential in Florida. Journal of Aquatic Plant Management, 23: 7-16.

Spence, D. H. N. and Maberly, S. C. 1985. Occurrence & ecological importance of HCO3 use among aquatic higher plants. In: W. J. Lucas and J. A. Berry (eds.). Inorganic carbon uptake by aquatic photosynthetic organisms. American Society of Plant Physiologists, Rockville, Maryland, pp. 125-143.

Steemann Nielsen, E. 1960. Uptake of CO2 by the plant. In: Encyclopedia of plant physiology. W. Ruhland (eds.). Vol 5, Part 1. Berlin: Springer Verlag. pp. 70-84.

Stumm, W. and Morgan, J. J. 1970. Aquatic chemistry - An introduction emphasizing chemical equilibria in natural waters. New York: Wiley - Interscience.

Van, T. K., Haller, W. T. and Bowes, G. 1976. Comparison of the photosynthetic characteristics of three submerged aquatic plants. Plant Physiology, 58: 761-768.

Latest MABJ Issue

Vol 50(1) June 2021


Table of content

Latest news!

Malaysian Applied Biology is listed in the databases and indexed in Web of Science Master Journal List, Elsevier, Mycite, Biosis, Zoological Records, UDLedge Life Science Index, CNKI, J-Gate and CABI.

Malaysian Applied Biology is indexed in Scopus since issue 41(1) 2012.

According to Scopus CiteScore 2020, MABJ ranks 165 out of 203 Malaysian journals in terms of yearly impact factor.

Scopus Citescore