Malaysian Applied Biology Journal

  • Increase font size
  • Default font size
  • Decrease font size


E-mail Print PDF
Malays. Appl. Biol. (December 2000) 29(1&2): 69-74



Department of Biomedical, Faculty of Medicine and Health Sciences, 43400 University Putra Malaysia, Serdang, Selangor, Malaysia.


In this study, we are investigating the in vitro inhibition of acetylcholinesterase activity in Channa striatus brain tissue :v mercury, cadmium, lead, nickel and zinc and the role of extracellular calcium. Fresh brain tissue was cut out from 35.50 ± 3.20 crn in length, 150.00 + 2.50 gm in weight cultured C.striatus, and homogenised in a phosphate buffer (0.1M, pH 7.0) (1:4 w/v) using a biohomogeniser (Biospees Product Inc.), M133/1281-0 at 4°C. The homogenised sample was then centrifuged for 20 mins. at 10,000 g using Beckman GS-6R centrifuge the resultant supernatant used for the assay. Acetylcholinesterase activity in C. striatus brain tissue was measured following the Ellman, et al., 1961 method using Shimadzu UP-2401PC spectrophotometer. Protein was determined using Lowry, et al., 1951 method to calculate the acetylcholinesterase specific activity. The sample was exposed to a series of in vitro sub-lethal concentration of each metal 2.50; 5.00; 7.50; 10.00 and 20.00 ppm were exposed to the assay. All the heavy metals studied had inhibited acetylcholinesterase activity in C. striatus brain tissue in a dose dependent manner. The inhibition were found to be significantly different at p < 0.05. Mercury was the most toxic, with 2.50 ppm enough to suppress 30 % of the acetylcholinesterase activity. It is therefore, based on the concentration of 20.00 ppm, we found that Hg>Cd>Pb>Zn>Ni in toxicity, at which mercury inhibited 180.76 ± 25.94 %; cadmium 148.08 ± 5.36 %; lead 88.19 ± 1.19 %; zinc 62.43 ± 2.28 % and nickel 64.19 ± 2.38 %. Subsequently, 20.00 ppm extracellular calcium induced 5.02 ±4.12 % stimulation of the acetylcholinesterase activity. It is also interesting to note that the lower concentrations of extracellular calcium 2.50 and 5.00 ppm had increased the acetylcholinesterase activity to 17.04 + 2.69 and 23.36 + 2.69 % respectively.


Di dalam kajian ini, kami melihat perencatan aktiviti asetilkolinesterase dalam tisu otak Channa striatus secara in vitrc oleh logam berat raksa, kadmium, plumbum, nikel dan zinkum, dan peranan kalsium ekstrasel. Tisu otak segar diperolehj dari C. striatus ternakan berukuran 35.50 + 3.20 cm, 150.00 ± 2.50 gm, dan dihomogenkan dalam penimbal fosfal 0.1M, pH 7.0, 1:4 (b/i) menggunakan biohomogeniser (Biospees Product Inc.), M133/1281-0 pada 4°C. Sampel yang slab dihomogen, kemudiannya diempar seterusnya selama 20 min pada 10,000 g menggunakan pengempar Beckman iS-6R. Aktiviti asetilkolinesterase dalam tisu otak C. striatus telah diukur mengikut kaedah Edman, et at., 1961 r.nsgunakan spectrofotometer Shimadzu UP-2401PC, dan protein ditenfukan berdasarkan kepada kaedah Lowry, et '., 1951 untuk menentukan aktiviti spesifik asetilkolinesterase. Sampel tisu otak C. straitus tela didedahkan kepada reberapa siri kepekatan separa-maut in vitro setiap logam iaitu 2.50; 5.00; 7.50; 1.00 and 20.00 ppm. Kesemua logam boat didapati merencat aktiviti asetilkolinesterase dalam tisu otak C. striatus. Perencatan logam berat ini dipengaruhi dos logam dan mempunyai perbezaan ketara pada p < 0.05. Raksa adalah paling toksik dengan dos 2.50 ppm yang ;_kup untuk merencat sebanyak 30% aktiviti asetilkolinesterase. Oleh itu, berdasarkan kepada kepekatan 20.00 ppm, kami mendapati bahawa ketoksikan logam berat terhadap C. striatus adalah Hg>Cd>Pb>Zn>Ni, di mana raksa telah erencat sebanyak 180.76 + 25.94 %; diikuti oleh kadmium 148.08 + 5.36 %; plumbum 88.19 + 1.19 %; zinkum 1 -3 ± 2.28 % dan nikel 64.19 + 2.38 %. Berikutnya, 20.00 ppm kalsium ekstrasell telah memulihkan 5.02 ± 4.12 -~ rangsangan terhadap aktiviti acetylcholinesterase. Seterusnya, adalah menarik untuk diperhatikan bahawa kepekatan talsium ekstra-sellular yang lebih rendah 2.50 dan 5.00 ppm telah meningkatkan aktiviti asetilkolinesterase kepada 17.04 - 2.69 dan 23.36 + 2.69 % masing - masing.

Key words: heavy metal, acetylcholinesterase activity, inhibition, and extracellular calcium


Babji AS, Awang Z, and Embong MS, 1986. Monitoring of heavy metal content of coastal water fishes in peninsular Malaysia. Proc. Ms. Conf. Dev. Managt. Trap. Living aquat. Resources Serdang. Pp 219-224. Universiti Pertanian Malaysia Serdang.

Busby DG, Pearce PA and Garrity NG, 1987. Effect of ultra ULV fenitrothion spraying on brain cholinesterase activity in forest songbirds. Bull. Environ. Contam. Toxicol., 39: 304-311.

Coppage DL, Methhews E, Cook G, Khigut J, 1975. Brain acetylcholinesterase Inhibition in Fish as a Diagnosis in Environmental by Melathion. Pest. Biochem. Physiol., 5: 536-542.

Dalai R and Bhattacharya S, 1993. Effect of cadmium, mercury, and zink on hepatic microsomal enzymes of Channa punctalus. Bull. Environ. Contam. Toxicol., 32: 893-897.

Donald LG, Evelyn FG, Leonard DK. 1981. Calcium trasnsport mechanism in membrane vesicicles from guinea pig brain synatosomes. The Journal of Biol. Chem., 256 (1): 184-192.

Ellman JC, Courtrey KD, Andres IR and Featherstone RM. 1961. A new rapid colorimetric determination of Acetyl­cholinesterase activity. Biochem. Pharmacol, 7: 88-95.

Higgins TE. 1989. Hazardous waste minimisation handbook. Lewis publisher, pp 75.

Hill EF and Fleming WJ. 1982. Anticholinesterase poisoning of bird; field monitoring and dianosis of acute poisoning. Environ. Toxicol. Chem., 1: 27-38.

Haines T. 1981. Effect of a aerial application of carbaryl on Brook trout Salvelinus fontinalis. Bull. Environ. Contam. Toxicol., 27: 534-542.

Jarvinen AW, Nordling BR and Henry ME. 1983. Chronic toxicity of Dursban (chlorpyritos) to the Fathead minnow Pimephales promelas and resultant acetylcholinesterase inhibition. Ecotoxicol. Environ. Safety, 7: 423-434.

John JC, Stephen JE and Walter SD. 1979. Influences of hardness constituents on the acute toxicity of cadmium to Brook Trout Salvelinus fontinalis. Bull. Environ. Contam. Toxicol., 22: 575-581.

Lamb JF, Ingram CG, Johnston IA and Pitman RM, 1991. Essential of Physiology, 3rd Ed., Blackwell Scientific Publications, Oxford.

Leake LD and Walker RJ. 1980. Invetebrate neuropharmacology. Blanke, Glasgow & London. Pp 69-101.

Lockhart WL, Meher DA, Ward FJ and Swason GM. 1985. Population and cholinesterase responses in fish exposed to malthion sprays. Pest. Biochem. Physiol., 24: 12-18.

Lowry OH, Rosebrough NJ, Farr AL and Randel RJ. 1951. Mesurement of protein with the folin phenol reagent. /. Biol. Chem., 193: 265-275.

Mat Jais, AM, Kerkut GA and Walker RJ 1983. The ionic mechanism associated with the biphasic glutamate response on leech Retzius cells. Comp. Biochem. Physiol., 74C(2): 71 -78.

Mat Jais, AM, Kerkut GA and Walker RJ 1984. The ionic mechanism associate with the response of kainite, L-glutamate, quisqualate, ibotenate, AMPA and methyltetrahydrofolate on leech Retzius cells. Comp. Biochem. Physiol., 77C(1): 115-126.

Mat Jais AM, Idris R, Ismail P 1995. Inhibitory effect of glufosianate ammonium on acetylcholinesterase in Haruan Channa striatus brain tissue. Proc. 5th symposium on our environment. Singapore, pp 35.

Mat Jais AM, Idris R, Yaakob Y and Mohamed MZ, 1998. Glufosinate ammonium inhibitory effects on acetylcholinesterase activity in indigenous haruan Channa striatus and laboratory mice brain tissue. Proceeding SETAC/UNIDO Asia Pacific Regional Symposium, Seoul, April 1998: 35-41.

Mat Jais, AM 2000. Environmental issues in Malaysia. SETAC Globe May - June 2000: 14- 16

Rakmi AR and Salmijah S. 1993. Metal finishing wastewater characteristic & minimisation. In Waste management in Malaysia, Ministry of Sciences, Technology and the Environment Malaysia.

Vander, AJ, Sherman, JH and Luciano, DS, 1994. Human Physiology: the mechanisms of body function 6 th ed., Me Graw Hill Inc., vol 11, pp 318 - 319.

Valle BL an Ulmer DD. 1972. Biochemical effect of mercury, calcium and lead. Ann. Rev. Biochem., 41: 91-128.

Latest MABJ Issue

Vol 50(1) June 2021


Table of content

Latest news!

Malaysian Applied Biology is listed in the databases and indexed in Web of Science Master Journal List, Elsevier, Mycite, Biosis, Zoological Records, UDLedge Life Science Index, CNKI, J-Gate and CABI.

Malaysian Applied Biology is indexed in Scopus since issue 41(1) 2012.

According to Scopus CiteScore 2020, MABJ ranks 165 out of 203 Malaysian journals in terms of yearly impact factor.

Scopus Citescore