Malays. Appl. Biol. (2005) 34(2): 25–30
UPTAKE OF TIN BY CYPERUS ROTUNDUS L. IN POT EXPERIMENTS
MUSHRIFAH, I.*, RAZIF, A., KHAIRIAH, J., TAN, K.H. and OOI, C.C.
School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM, Bangi, Selangor, Malaysia
*
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
ABSTRACT
Cyperus rotundus was planted in pots to determine tin (Sn) uptake and its biological absorption coefficient (BAC) values. The plants were exposed to varying Sn concentrations of 100ppm, 200ppm and 300ppm each for 2 and 4 weeks. The soil pH during the experiment remains unchanged at 6.3. The percentage of soil particle less than 63?m was about 23% while its organic content was about 2%. By sequential extraction analysis, Sn was found to chelate to fractions described as the ‘Easily and Freely Leached and Exchangeable (EFLE)’ fraction and ‘Organic oxidation (OO)’ fractions. Despite the increasing exposure to Sn, chelation of Sn to the soil fractions decreased. This noticeable decrease in Sn concentrations in soil was seen as uptake by Cyperus rotundus. The uptake of Sn by the in plant followed a reverse trend as compared to soil. Roots were the highest site of Sn accumulation in the plant, followed by the leaves, stems and the fruit. Although the BAC value for Cyperus rotundus indicated an intermediate absorption, the plant was able to strive in the presence of high Sn concentrations, normally not found in most plants.
ABSTRAK
Cyperus rotundus ditanam dalam pasu bagi menentukan pengambilan stanum (Sn) dan nilai pekali resapan biologi (BAC). Tumbuhan telah didedahkan kepada beberapa kepekatan Sn selama 2 dan 4 minggu ia itu pada kepekatan 100ppm, 200ppm dan 300ppm. Sepanjang ujian ini dijalankan didapati pH tanih kekal pada 6.3. Peratus partikel tanih yang kurang daripada 63?m adalah sebanyak 23%, manakala kandungan organik adalah sebanyak 2%. Melalui analisis eksraksi bersekuen, Sn didapati menunjukkan kepekatan yang tinggi dalam fraksi tukar ganti ion dan mudah luluhlarut (EFLE) dan oksidasi organik (OO). Walaupun dedahan kepekatan Sn kepada tanih meningkat, di dapati kehadirannya dalam tanih menurun. Penurunan ini berlaku mungkin disebabkan oleh pengambilan Sn oleh Cyperus rotundus. Corak pengambilan Sn oleh tumbuhan didapati songsang berbanding dengan tanih. Bahagian akar merupakan tapak tumpukan Sn dalam tumbuhan, diikuti dengan daun, batang dan buah. Walaupun nilai BAC Cyperus rotundus menunjukkan resapan yang perantaraan, tumbuhan ini boleh hidup dalam keadaan tanih yang mempunyai Sn yang tinggi, yang tidak selalu terdapat pada tumbuhan lain.
Key words: Cyperus rotundus L., Sn, hyperaccumulator plant, sequential extraction, tin tailing area.
REFERRENCES
Adriano, D.C., Bollag, J.M., Frankenberger, Jr., W.T. & Sims, R.C. (eds). 1999. Bioremediation of Contaminated Soils, Am. Soc. Agron., Madison, WI.
AOAC. 1984. Official Methods of Analysis. William S (ed). Association of Official Chemist. Virginia. Association of Official Chemist.
Badri, M.A., & Aston, S.R. 1983. Observations on heavy metal geochemical associations in polluted and non-polluted estuarine sediments. Environmental Pollution. 5(6): 181- 193.
Brooks, R.R. 1998. Plants that Hyperaccumulate Heavy Metals. New York: Cab International.
Baker, A.J. & Walker, M.P.L. 1990. Ecophysiology of metal uptake by tolerant plants. In: Heavy metal tolerance in plants: evolutionary aspects, Shaw, A. J. (ed.), CRC Press, Boca Raton, Florida, USA. pp. 155– 178.
Black, H. 1995. Absorption possibilities: phytoextraction. Environmental Health Perspect. 103: 1106-1117.
Chapman, H.D. (ed). 1972. Diagnostic Criteria for Plants and Soils. Uni. of California, Riverside, California.
Duddridge, J.E., & Wainwright, M. 1981. Heavy metals in sediment – calculation of metal adsorption maxima using Langmuir and Freudlich Isotherms. Environmental Pollution. 2: 387-397.
Filipeks, L.H., Chao, T.T. & Carpenter, R.H. 1981. Factors affecting the partitioning of Cu, Zn, Pb in boulder coatings and stream sediments in the vicinity of polymetallic sulphide deposits. Chemical Geology. 26: 105- 117.
Forstner, U. & Whittman, G.T.W. 1981. Metal pollution in the Aquatic Environment. Berlin: Springer-Verlag.
Griffitts, W.R. & Milne, D.B. 1977. Tin in Geochemisty and the Environmnet. Vol. 2, Beeson K.C (ed) N.A.S., Washington, D.C.
Harrison, R.J., Laxen, D.P.H. & Wilson, S.J. 1981. Chemical association of lead, cadmium, copper and zinc in street dusts and roadside soils. Environmental Science Technology. 15 : 1378-1382.
Impens, R., Fagot, J. & Avril, C. 1991. Gestion des Sols Contamines par les Metaux Lourds. Association Francaise Interprofessionelle du Cadmium, Paris, France.
Kabata-Pendias, A. & Pendias, H. 1999. Biogeochemistry of Trace Elements. 2 nd ed. Wyd. Nauk PWN, Warsaw.
Kahle, H. 1993. Response of roots of trees to heavy metals. Environmental and Experimental Botany. 33(1): 99-119.
Kobayashi, J. 1971. Air and water pollution by cadmium, lead and zinc attributed to the largest zinc refinary in Japan. Hemphill, D.D. (Ed.) Trace Subst. Environ. Health Vol. 5, University of Missouri, Columbia.
Kovalevskiy, A.L. 1979. Biogeochemical Exploration for Mineral Deposits. Amerind Publ. Co. Prt. Ltd. New Dehli.
Perelman AI. 1966. The geochemistry of land areas (in Russian), English summary. Izd Vish Shk, Moscow.
Sims, J.T. 2000. Soil fertility evaluation. Summer, M. (Ed.) Handbook of soil Science. Chapter D-137. Baton Rough: CRC Press.
Shacklette, H.T. & Boerngen, J.G. 1984. Element concentrations in soils and other surficial materials of the conterminous United States, U.S. Geol. Surv. Prof. Pap. 1270, Pp 105-113.
McGrath, S.P., Shen, Z.G. & Zhao, F.J. 1997. Heavy metal uptake and chemical changes in the rhizophere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soil. Plant Soil. 188: 153-163.
Miller, R.W. & Donahue, R.L. 1990. Soils: An Introduction to Soils & Plant Growth. Sixth Edition. Prentice Hall, N.J.
Nagaraju, A. & Karimulla, S. 2002. Accumulation of elements in plants and soils in and around Nellore Mica belt, Andhra Pradesh, India - a biogeochemical study. Environmental Geology. 41: 852-860.
Pendias, A.K. & Pendias, H. 2001. Trace Elements in soil and Plants. CRC Press. Baco Raton Lodon New York Washington, DC.
Peterson, P.J., Burton, M.A., Gregson, M., Nye, S.M. & Porter, E.K. 1976. Tin in plants and surface waters in Malaysian Ecosystems. Hemphill. D.D. (Ed) Trace metal in the Environmental Health-X. A Symposium. University of Missouri, Columbia.
Raby, W.P. & Wong S. Pin. 1972. Common Malaysian Weeds and their control. Pg 50-51.
Raghu, V. 2001. Accumulation of elements in plants & soils and around Mangampeta and Vemula barite mining areas, Cuddapah District, A.P. India. Environmental Geology 40: 1265–1277.
Romney, E.M., Wallace, A. & Alexander, G.V. 1975. Responses of bush bean and barley to tin applied to soil and to solution culture. Plant Soil. 42: 585-594.
Ure, A.M. & Bacon, J.R. 1978. Comprehensive analysis of soils and rocks by spark-source mass spectrometry. Analyses. 103: 807-812.
Walkley & Black. 1934. An examination of the Degtjareff method of determining soil organic matter, proposed modification of the chromic acid titration method. Soil Sci. 37(1): 29-38.
Yip, Y.H. 1969. The Development of the Tin Mining Industry of Malaya. Kuala Lumpur, University of Malaya Press.