Malays. Appl. Biol. 34(2): 51–59
ANALYSIS OF HEAVY METAL CONCENTRATION DATA (Cd, Cu, Pb AND Zn) IN DIFFERENT GEOCHEMICAL FRACTIONS OF THE SURFACE SEDIMENTS IN THE STRAITS OF MALACCA BY THE USE OF CORRELATION AND MULTIPLE LINEAR STEPWISE REGRESSION ANALYSES
YAP, C.K.*, RAHIM-ISMAIL, A., ISMAIL, A. and TAN, S.G.
Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
*E-mail:
This e-mail address is being protected from spambots. You need JavaScript enabled to view it
ABSTRACT
Statistical studies on the correlation analysis and multiple linear stepwise regression analyses based on the different geochemical fractions of metals (Cd, Cu, Pb and Zn) in the sediments of the Straits of Malacca were conducted. Significant (P< 0.001) correlation matrices were found among total concentrations of Cd, Cu, Pb and Zn indicating that they had a common source of anthropogenic origin. The nonresistant fractions of Cd, Cu, Pb and Zn were mainly due to the ‘oxidisable-organic’ fractions (Cd: R= 0.91; Cu: R= 0.99; Pb: R= 0.97 and Zn: R= 0.99) of the sediments which were considered to be related to anthropogenic activities. The assumption that the elevated metal concentrations were due to anthropogenic sources (nonresistant) in the sediments was found to be true for Cd (R= 0.83, P< 0.001), Cu (R= 0.69, P< 0.001) and Pb (R= 0.87, P< 0.001) but not for Zn (P> 0.05). The total concentrations of Cd, Cu, Pb and Zn were also significantly correlated with and related to their resistant fractions (with R values are Cd: 0.68; Cu: 0.96; Pb: 0.85 and Zn: 0.96). Multiple linear stepwise regression analysis revealed that the total concentrations of metals were influenced by the geochemical fractions of the metals that resulted in highly significant (p< 0.001) of all models and some of them are also significantly (at least P< 0.05) correlated by performing the Pearson’s correlation analysis. Based on the present data, the relationships and behaviours of the geochemical fractions of Cd, Cu, Pb and Zn in the surface sediment of the Straits of Malacca could be understood by using correlation analysis and multiple linear stepwise regression analysis.
ABSTRAK
Kajian statistik dilakukan dalam analisis korelasi dan analisis ‘multiple linear stepwise’ regresi berdasarkan pelbagai fraksi geokimia bagi logam (Cd, Cu, Pb dan Zn) di dalam sedimen di Selat Melaka. Korelasi matriks yang signifikan (P< 0.001) telah diperolehi di dalam jumlah kepekatan Cd, Cd, Pb dan Zn menunjukkan mereka mempunyai sumber antropogenik yang sama. Fraksi tidak resistan bagi Cd, Cu, Pb dan Zn adalah disebabkan oleh fraksi ‘oxidisable- organic’ (Cd: R= 0.91; Cu: R= 0.99; Pb: R= 0.97 dan Zn: R= 0.99) dalam sedimen yang dianggap berkaitan dengan aktiviti antropognik. Anggapan bahawa kepekatan yang tinggi adalah disebabkan oleh sumber antropogenik (fraksi tidak resistan) in dalam sediment adalah benar bagi Cd (R= 0.83, P< 0.001), Cu (R= 0.69, P< 0.001) dan Pb (R= 0.87, P< 0.001) tetapi tidak bagi Zn (P> 0.05). Jumlah kepekatan bagi Cd, Cu, Pb dan Zn juga mempunyai korelasi yang signifikan dengan fraksi resistan mereka (dengan nilai-nilai R sebagai Cd: 0.68; Cu: 0.96; Pb: 0.85 dan Zn: 0.96). Analisis ‘multiple linear stepwise’ regresi menunjukkan bahawa jumlah kepekatan bagi logam adalah dipengaruhi oleh fraksi geokimia bagi logam tersebut dan sesetengah daripada mereka juga berkorelasi secara signifikan dalam analisis Pearson’s kolerasi. Berdasarkan data ini, hubungan dan kelakuan bagi fraksi geokimia logam Cd, Cu, Pb dan Zn di dalam sedimen permukaan di Selat Melaka boleh difahami menggunakan analisis korelasi dan analisis ‘multiple linear stepwise’ regresi.
Key words: Heavy metals, Correlation analysis, multiple linear stepwise regression analysis, sediment, the Straits of Malacca
REFERRENCES
Alberts, J. J. and Filip, Z. 1998. Metal binding in estuaries humic and fulvic acids: FTIR analysis of humic acid-metal complexes. Environmental Technology 19: 923-931.
Badri, M. A. and Aston, S. R. 1983. Observation on heavy metal geochemical associations in polluted and non-polluted estuarine sediments. Environmental Pollution (Series B) 6: 181-193.
Brakstad, F. 1992. A comprehensive pollution survey of polychlorinated dibenzo-p-dioxins and dibenzofurans by means of principal component analysis and partial least square regression. Chemosphere 25: 1611-1629.
Broman, D., Lindqvist, L. and Lundbergh, I. 1991. Cadmium and zinc in Mytilus edulis (L.) from the Bothnian and the Northern Baltic Proper. Environmental Pollution 74: 227-244.
Forstner, U. and Wittmann, G. 1981. Metal pollution in the aquatic environment. Springer Berlin. 453 pp.
Gallego, J. L. R., Ordonez, A. and Loredo, J. 2002. Investigation of trace element sources from an industrialized area (Aviles, northern Spain) using multivariate statistical methods. Environment International 27: 589-596.
Grande, J. A., Borrego, J., Morales, J. A. and de la Torre, M. L. 2003. A description of how metal pollution occurs in the Tinto-Odiel rias (Huelva-Spain) through the application of cluster analysis. Marine Pollution Bulletin 46: 475-480.
Hakanson, L. 1980. An ecological risk index for aquatic pollution control- A sedimentological approach. Water Research 14: 975-1001.
Hanson, P. J., Evans, D. W., Colby, D. R. and Zdanowicz, V. S. 1993. Assessment of elemental contamination in estuarine and coastal environments based on geochemical and statistical modeling of sediments. Marine Environmental Research 36: 237-266.
Hatje, V., Bidone, E. D. and Maddock, J. L. 1998. Estimation of the natural and anthropogenic components of heavy metal fluxes in freshwater Sinos River, Rio Grande Do Sul State, South Brazil. Environmental Technology 19: 483-487.
Horowitz, A. J. and Elrick, K. A. 1987. The relation of stream sediment surface area, grain size and composition to trace element chemistry. Applied Geochemistry 2: 437-451.
Law, A. T., Hii, Y. S., Jong, K. J. and Mok, M. L. 2002. JICA/UPM Malacca Straits Expedition No 4: Petroleum hydrocarbon, nitrogen and phosphorus distribution. In Tropical Marine Environment: Charting strategies for the millennium. F. M. Yusoff, M. Shariff, H. M. Ibrahim, S. G. Tan and S. Y. Tai (eds.) (MASDEC, Universiti Putra Malaysia, Serdang, Malaysia) pp 281-301.
Manly, B. F. J. 1997. Multivariate statistical methods: A primer. Second edition. Chapman and Hall, London.
Martin, J. M. and Whitfield, M. 1983. The significance of the river input of chemical elements to the ocean. In Trace Metals in the Seawater, eds., C. S. Wong, E. Boyle and E. D. Golberg. (Plenum, New York) pp 265-296.
Nasir, M. S. 2001. Variability of physical parameters in the Straits of Malacca. In: Aquatic resource and environment studies of the Straits of Malacca: Current research and reviews. B. Japar Sidik, A. Arshad, S. G. Tan, S. K. Daud, H. A. Jambari and S. Sugiyama (eds.) (MASDEC, Malaysia, Serdang, Malaysia) pp 1-9.
Phillips, D. J. H. 1991. Selected trace elements and the use of biomonitors in subtropical and tropical marine ecosystems. Review of Environmental Contamination and Toxicology 120: 105-129.
Phillips, D. J. H. and Rainbow, P. S. 1993. Biomonitoring of trace aquatic contaminants. (Elsevier Science, London) 371 pp.
Ramessur, R. T. 2004. Statistical comparison and correlation of zinc and lead in estuarine sediments along the western coast of Mauritius. Environment International 30: 1039-1044.
Rubio, B., Nombela, M. A. and Vilas, F. 2000. Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): An assessment of metal pollution. Marine Pollution Bulletin 40: 968-980.
Simeonov, V., Massart, D. L., Andreev, G. and Tsakovski, S. 2000. Assessment of metal pollution based on multivariate statistical modelling of ‘hot spot’ sediment from the Black Sea. Chemosphere 41: 1411-1417.
Soto-Jimenev, M., Paez-Osuma, F. and Morales- Hernandez, F. 2001. Selected trace metals in oysters (Crassostrea iridescens) and sediment from the discharge zone of the submarine sewage outfall in Mazatlan Bay (southeast Gulf of California): chemical fractions and bioaccumulation factors. Environmental Pollution 114: 357-370.
Spencer, K. L. 2002. Spatial variability of metals in the inter-tidal sediments of the Medway Estuary, Kent, UK. Marine Pollution Bulletin 44: 933-944.
Wangersky, P. J. 1986. Biological control of trace metal residence time and speciation: a review and synthesis. Marine Chemistry 18: 269-297.
Yap, C. K., Ismail, A., Tan, S. G. and Omar, H. 2002a. Correlations between speciation of Cd, Cu, Pb and Zn in sediment and their concentrations in total soft tissue of green- lipped mussel Perna viridis from the west coast of Peninsular Malaysia. Environment International 28: 117-126.
Yap, C. K., Ismail, A., Tan, S. G. and Omar, H. 2002b. Concentrations of Cu and Pb in the offshore and intertidal sediments of the west coast of Peninsular Malaysia. Environment International 28: 467-479.
Yap, C. K., Rahim Ismail, A., Ismail, A. and Tan, S. G. 2003a. Studies on heavy metal accumulations in green-lipped mussel Perna viridis by using multiple linear stepwise regression analysis. Pertanika Journal of Science and Technology 11(1): 43-55.
Yap, C. K., Ismail, A. and Tan, S. G. 2003b. Cd and Zn in the straits of Malacca and intertidal sediments of the west coast of Peninsular Malaysia. Marine Pollution Bulletin 46: 1348- 1353.
Yap, C. K. 2003. Assessment of green-lipped mussel Perna viridis as a biomonitoring agent of cadmium, copper, mercury, lead and zinc for the west coast of Peninsular Malaysia. Ph.D. thesis submitted to the Faculty of Science and Environmental Studies, Universiti Putra Malaysia.
Yu, K. C., Tsai, L. J., Chen, S. H. and Ho, S. T. 2001. Correlation analysis on binding behavior of heavy metals with sediment matrices. Water Research 35: 2417-2428.
Zar, J. H. 1996. Biostatistical Analysis (3rd ed.) (Prentice-Hall International, New Jersey).