Malaysian Applied Biology Journal

  • Increase font size
  • Default font size
  • Decrease font size


E-mail Print PDF
Malays. Appl. Biol. (2007) 36(1): 73–78



Department of Bioprocess Engineering, Faculty of Chemical & Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor.
*E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it


The best operating conditions for phenol degradation by immobilized Pseudomonas sp in packed column were determined, and then evaluated in repeated batch cultures. The maximum degradation rate occurred in i) the support with 1.0 cm diameter or less, ii) loading rate of 2.5 ml/min, and iii) in culture supplemented with nutrient. At these conditions, the immobilized cells managed to remove 100% of 1000 ppm phenol within 24 hours, and repeated the same performance in the next six consecutive batches. This achievement was comparable to published data. The approach employed in this study provides a useful guideline in treating phenolic contaminants using packed reactor system.


Keadaan terbaik untuk menjalankan degradasi fenol oleh Pseudomonas sp yang tersekatgerak dalam turus padat telah ditentukan dan dinilai dalam kultur kelompok berulang. Kadar penguraian yang paling tinggi berlaku i) dalam penyokong yang bersaiz 1.0 cm atau kurang, ii) kadar alir 2.5 ml/min, dan iii) dalam kultur yang dibekal nutrien. Pada keadaan terbaik ini, sel tersekatgerak ini berupaya mengurai 100% fenol yang berkepekatan 1000 ppm dalam masa 24 jam, dan mengulangi prestasi yang sama dalam enam kelompok seterusnya berturut-turut. Pencapaian ini setanding dengan data yang pernah dilaporkan. Pendekatan yang dijalankan dalam penyelidikan ini memberi garis panduan yang berguna dalam rawatan fenol menggunakan sistem turus padat.

Key words: Pseudomonas, phenol degradation, bioceramic, repeated batch, packed column


Aksu, Z. and Bulbul, G. 1999. Determination of the effective diffusion coefficient of phenol in Ca-alginate-immobilized P.putida beads. Enzyme and Microbial Technology, 25: 344- 348.

Box, J.D. 1981. Investigation of the Folin- Ciocalteau Phenol Reagent for the Deter- mination of Polyphenolic Substances in Natural Waters. Water Research, 17: 511-524.

Chen, K.C., Lin, Y.H., Chen, W.H. and Liu, Y.C. 2002. Degradation of Phenol by PAA- immobilized Candida tropicalis. Enzyme and Microbial Technology, 31: 490-497.

Chung, T.P., Tseng, H.Y. and Juang, R.S. 2003. Mass Transfer effect and intermediate detec- tion for phenol degradation in immobilized Pseudomonas putida systems. Process Bio- chemistry, 38: 1497-1507.

Collins, L.D. and Daugulis, A.J. 1997. Charac- terization and optimization of a two-phase partitioning bioreactor for the biodegradation of phenol. Applied Microbial Biotechnology, 48: 18-22.

El-Haleem, D.A., Beshay, U., Abdelhamid, A.O., Moawad, H. and Zaki, S. 2003. Effects of mixed nitrogen sources on biodegradation of phenol by immobilized Acinetobacter sp. Strain W-17. African Journal of Biotechno- logy, 2: 8-12.

Grady, C.P. (1985). Biodegradation: its measure- ment and microbiological basis. Biotechnology Bioengineering, 27: 660-674.

Gonzalez, G., Herrera, G., Garcia, M.T. and Pena, M. 2001. Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida. Bioresource Technology, 80: 137-142.

Hannaford, A.M. and Kuek, C. 1999. Aerobic batch degradation of phenol using immo- bilized Pseudomonas putida. Journal of Industrial Microbiology and Biotechnology, 22: 121-126.

Hao, O.J., Kim, M.H., Seager, E.A. and Kim, H. 2002. Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemo- sphere, 46: 797-807.

Hughes, E.J. and Bayly, R.C. 1983. Control of catechol meta cleavage pathway in Ralstonia eutropha. Journal Bacteriol, 154: 1363-1370.

Kim, J.H., Oh, K.Y., Lee, S.T., Kim, S.W. and Hong, S.I. 2001. Biodegradation of phenol and cholorophenols with defined mixed culture in shake flasks and a packed bed reactor. Process Biochemistry, 37: 01367-1373.

Kumar, A., Shashi, K. and Surendra, K. 2004. Biodegradation kinetics of phenol and cathecol using Pseudomonas putida 1194. Biochemical Engineering Journal, 22: 151-159.

Lob, K.C. and Tar, P.P. 2000. Effect of Additional Carbon Source on Biodegradation of Phenol. Buletin of Environmental Con- tamination and Toxicology, 64: 756-767.

Mordocco, A., Kuek, C. and Jenkins, R. 1999. Continuous Degradation of Phenol at Low Concentration using Immobilized Pseudo- monas putida. Enzyme Microbial Technology, 25: 530-536.

Nuhoglu, A. and Yalcin, B. 2004. Modelling of phenol removal in a batch reactor. Process Biochemistry, 1-7.

Nurdan, K.P. and Azmi, T. 2004. Biodegradation of phenol by Pseudomonas putida immobilized on activated pumice particles. Process Biochemistry, 48: 1807-1814.

Prieto, M.B., Hidalgo, A., Serra, J.L. and Lama, M.J. 2002. Degradation of phenol by Rhodo- coccus erythropolis UPV-1 immobilized on Biolite in a packed-bed reactor. Journal of Biotechnology, 97: 1-11

Ramsay, B.A, Cooper, D.G., Margaritis, A. and Zajic, J.E. 1983. Rhodochorous Bacteria: Biosurfactant Production and Demulsifying Ability. Microbial Enhanced Oil Recovery, 61- 65.

Shuler, M.L. and Kargi, F. 2002. Bioprocess Engineering-Basic Concepts. 2nd Ed. Prentice Hall PTR, Turkey. 266 pp.

Valenzuela, J., Bumann, U., Cespedes, R., Padila, L. and Gonzalez, B. 1997. Degradation of chloropehnols by Alcaligenes eutrophus JMP134 (pJP4) in bleached kraft mill effluent. Applied Environment Microbiology, 63: 227– 32.

Wang, S.J. and Loh, K.C. 1999. Modelling the Role of Metabolic Intermediates in Kinetic of Phenol Biodegradation. Enzyme and Micro- bial Technology, 25: 177-184.

Main Menu