Malaysian Applied Biology Journal

  • Increase font size
  • Default font size
  • Decrease font size

07_RitaHayati

E-mail Print PDF

Malays. Appl. Biol. (2009) 38(1): 49–53


BOUND WATER DETERMINATION OF Katsoubushi (Euthynnus affinis) USING THREE MATHEMATICAL MODELS

RITA HAYATIa, AMINAH ABDULLAHb, MOHD. KHAN AYOBb and SOEWARNO T. SOEKARTOc
aLecturer at University Syiah Kuala, Nanggroe Aceh Darussalam, Banda Aceh, Indonesia
bFood Science Program, School of Chemical Sciences and Food Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. Malaysia
cFaculty of Science and Food Technology, Institut Pertanian Bogor, Dramaga, Bogor, Indonesia

ABSTRACT

The water sorption regions accounted for three fractions of bound water as analyzed using three different mathematical models. Water isotherm sorption curve of katsoubushiis typical sigmoid, the first water fraction ranged 0 – 5.95%, the second 5.95 – 17.52% and the third fraction ranged 17.52 – 91.12% dry basis (db), which is equivalent to 0 – 5.6%, 5.6 – 14.9% and 14.9 – 47.4% wet basis (wb), respectively. The water sorption regions, which is suitable for storage purposes, controlled the microbial growth, inhibited enzyme activity and fulfilled the packaging requirement.

ABSTRAK

Kawasan isoterma serapan air untuk tiga fraksi telah dianalisis dengan menggunakan tiga model matematik yang berbeza. Lengkuk isoterma serapan air katsoubushiberbentuk tipikal sigmoid, meliputi tiga kawasan serapan air iaitu kawasan fraksi air pertama antara 0 – 5.95%, kedua 5.59 – 17.52% dan ketiga 17.52 – 91.12% berat kering (bk), atau dalam berat basah fraksi air pertama 0 – 5.6%, kedua 5.6 – 14.9% dan ketiga 14.9 – 47.4% berat basah (bb). Kawasan air merupakan tahap yang paling baik untuk tujuan penyimpanan, dan dapat mengawal pertumbuhan mikroorganisma, merencat aktiviti enzim dan memenuhi keperluan pembungkusan.

REFERENCES

A.O.A.C. 1995.     Official Methods of Analysis, Association of official Agricultural Chemist. Washington D.C.
Aguilera, J.M. & Stanley, D.W. 1999. Microstural principles of food processing and engineering. 2nd Ed. Maryland, Aspen.
Akanbi, C.T., Adeyemi, R.S. & Ojo, A. 2006. Drying characteristics and sorption isotherm of tomato slices. Journal of Food Engineering 73: 157-163.
Basunia, M.A. & Abe, T. 2001. Moisture desorption isotherms of medium-grain rough rice. Journal of Stored Products Research 37: 205:219.
Brunauer, S., Emmet, P. & Teller, E. 1938. Adsorption in multimolecular layers. Journals of the American Chemical Society 60: 309-319.
Comaposada, J., Gou, P. & Arnou, J. 2000. The effect of sodium chloride contents and temperature on pork meat isotherm. Meat Science 55: 291-295.
Giner, S.A. & Gely, M.C. 2005. Sorptional parameters of sunflower seeds of use in drying and storage stability studies. Biosystems Engineering 92(2): 217-227.
Labuza, T.P. 1984. Moisture Sorption: Practical Aspects of Isotherm Measurement and Use. Am. Assoc. Cereal Chem., St. Paul Minnesota. 544 pp.
McLaughlin, C.P. & Magee, T.R.A. 1998. The determination of sorption isotherm and the isosteric heats of sorption for potatoes. Journal of Food Engineering 44: 193-199.
Mathlouthi, M. 2001. Water content, water activity, water structure and the stability of foodstuffs. Food Control 12: 409-417.
Shivahare, U.S., Arora, S., Ahmed, J. & Raghavan, G.S.V. 2004. Moisture sorption isotherms of mushroom. Lebensmittel-Wissenschaft und Technologie 37: 133-137.
Soekarto, S.T. 1978. Pengukuran Air Ikatan dan Peranannya pada Pengawetan Pangan (Bound Water Determination and its Significance to Food Preservation). Bulletin Perhimpunan Ahli Teknologi Pangan Indonesia, 4: 4-18.
Van den Berg, C. & Bruin, S. 1981. Water Activity and its Estimation in Fopd Systems: Theoretical Aspects. In Water Activity: Influences in Food Quality. Rockland, L.B and Steward, G.F. (ed). London. 253 pp.

 

Main Menu